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The technique of crystal truncation rod (CTR) diffraction is widely used for

studying the structure of crystalline surfaces and interfaces. The theory and

experimental details of the technique are well established; however, published

methods for structure-factor calculations are typically based on a simple surface

cell geometry. A method is presented for determining a surface coordinate

system which results in a reciprocal lattice that is simply de®ned in terms of the

surface termination. Based on this surface coordinate system, a general

formalism for the calculation of CTR structure factors is re-derived, which may

be easily applied to any surface that can be represented as a rational plane of a

bulk crystal system.

1. Introduction

X-ray scattering techniques are broadly applied to the study of

crystalline surface structures. Among the most common

surface scattering techniques is the measurement of crystal

truncation rods (CTRs). Crystal truncation rods are diffuse

streaks of intensity running perpendicular to a surface

connecting bulk Bragg points and arise as a natural conse-

quence of the presence of a sharp termination of the crystal

(Robinson, 1986; Andrews & Cowley, 1985). CTRs can be

analyzed for the determination of surface termination,

relaxation and surface roughness, as well as applied to the

study of reconstructed surfaces by analysis of fractional order

rods. The details of the measurements have been discussed

previously (Fuoss & Brennan, 1990; Robinson & Tweet, 1992;

Vlieg et al., 1989) and the sensitivity of CTRs to the above

surface properties has been shown for a number of systems

(Feidenhans'l, 1989; Renaud, 1998; Robinson, 1991).

The conventional method for the analysis of CTRs is

derived using a unit cell de®ned in terms of the surface

orientation, with the unit-cell basis vectors de®ned by two in-

plane lattice vectors and a third lattice vector perpendicular to

the surface plane (Robinson, 1986; Vlieg, 2000; Vlieg et al.,

1989). This de®nition of the real-space lattice leads to a

convenient representation of the reciprocal lattice in which

the scattering vector (Q) is expressed in terms of two pure in-

plane components (Hs, Ks) which give the parallel momentum

transfer (Q||), and a third component (Ls) giving the perpen-

dicular momentum transfer (Q?).1 The structure-factor

calculations are then given in terms of summations over the in-

plane and surface-normal directions.

For cubic lattices, a surface termination along a rational

plane will always result in a suitable surface unit cell.

However, in general, it may not be possible to de®ne a surface

unit cell with a basis vector along the direction of the surface

normal that is space-®lling (Robinson, 1998). Two approaches

may be used to index a surface unit cell in which there is no

rational repeat of the lattice along the direction of the surface

normal. First, the surface cell indexing may be performed

using two in-plane lattice vectors to de®ne as and bs, and a

third out-of-plane lattice vector which is not perpendicular to

the surface plane to de®ne cs. In this case, the plane de®ned by

the reciprocal-lattice vectors a�s and b�s will be tilted with

respect to the surface plane, while c�s is parallel to the surface-

normal direction. In the second approach, two in-plane lattice

vectors are again used to de®ne as and bs, but we now de®ne cs

to be mutually perpendicular. Again c�s is parallel to the

surface-normal direction, but the plane de®ned by a�s and b�s is

now forced to be parallel to the surface plane. However, in this

prescription cs is not necessarily a lattice vector of the bulk

crystal.

In both surface indexing approaches, the CTRs are parallel

to the c�s direction. If cs is chosen as an off-normal bulk lattice

vector, the surface cell will retain a well de®ned translational

symmetry, but the positions of the Bragg peaks along the

surface rods will not have a simple relationship with respect to

the in-plane (i.e. Q? = 0) position when the direction of Q

points across the surface. In the second approach, Q is simply

expressed in terms of two pure in-plane components (Hs, Ks)

and a single perpendicular (Ls) component with Ls = 0

corresponding to the in-plane position for all CTRs. This

second approach results in a convenient coordinate system for

data collection and analysis protocols; however, the intro-

duction of a non-crystallographic unit cell must be taken into

account in the calculation of the CTR pro®le. In this paper, we

1 We use as, bs, cs and Hs, Ks, Ls to refer, respectively, to the real-space basis
vectors and the reciprocal-lattice indices of the scattering vector (Q) in the
surface indexing.



explore the consequences of this second choice and show that

it offers a viable way to perform calculations of CTR structure

factors.

2. Definition of the surface basis system

For a crystalline surface that can be de®ned using a crystal-

lographic right-parallelepiped unit cell, the entire crystal

structure can be generated by translation of the unit cell using

a lattice vector

Rc � n1as � n2bs � n3cs; �1�
where the n's are integers. The basis vectors as and bs are in the

surface plane and the third basis, cs, is parallel to the surface

normal. The surface plane is taken to be at n3 = 0, with n3 < 0 in

the bulk, and the bulk crystal extends to n3 = ÿ1. The crystal

is assumed to be of large extent in-plane with n1,2 spanning the

range �(N1,2 ÿ 1)/2. This geometry can be viewed as building

up the crystal by stacking slabs of N1 � N2 cells along the

direction normal to the surface, where n1,2,3 = 0 de®nes the

center of the surface plane. It is assumed that the slab stacking

sequence is simply repeated, such that the lattice points (n1,2 =

0, n3) lie on the line perpendicular to the surface passing

through the lattice origin at n1,2,3 = 0.

The surface coordinate frame used here maintains the

above de®nition for the surface unit cell, with basis vectors as

and bs in the surface plane and cs parallel to the surface normal

to de®ne the two-dimensional slab that describes the surface

of interest. However, we relax the condition that the slabs are

simply repeated along the surface normal. Rather, we assume

a more general case in which the remainder of the bulk crystal

can be generated by repeat of the two-dimensional slabs along

a slab repeat vector, Vr, where Vr is not necessarily parallel to

the surface normal.

A more concise description of the surface indexing may be

arrived at by de®ning the origin of the surface coordinate

system to be coincident with the origin of the bulk lattice. We

assume that the surface termination can be expressed as a

rational plane (HKL) of the bulk lattice. Therefore, the bulk

crystal will be terminated by the plane perpendicular to the

surface-normal vector, dHKL/|dHKL|, centered at a distance

|dHKL| from the lattice origin, where |dHKL| is the usual plane

spacing as depicted in Fig. 1. We note that since the plane

(HKL) is a rational plane (where H, K, L are a set of relatively

prime integers), it will always contain an in®nite set of bulk

lattice points, as will all planes parallel to (HKL) centered at

intervals of ndHKL, where n = 0,�1, �2 . . . (Kelly & Groves,

1970; Sands, 1982). Therefore, the in-plane basis vectors of the

surface coordinate system (as, bs) can be chosen from the set

of bulk lattice vectors in the plane parallel to (HKL) passing

through the system origin (n = 0 in Fig. 1). The in-plane basis

vectors are typically chosen as the two smallest non-collinear

vectors that form a right-handed system with respect to dHKL,

and can be expressed in terms of the bulk in-plane lattice

vectors by

as � xasa� yasb� zasc �2�
and

bs � xbsa� ybsb� zbsc; �3�
where [xas, yas, zas] and [xbs, ybs, zbs] are integers.

A space-®lling unit cell may be de®ned using a third out-of-

plane bulk lattice vector. However, the third lattice vector in

this prescription will not necessarily be parallel to dHKL since

the line parallel to dHKL is not always a rational line in non-

cubic systems. Choosing an off-normal lattice vector for cs

results in the plane de®ned by a�s and b�s being tilted with

respect to the surface plane (de®ned by as and bs); therefore,

the Hs and Ks components of Q will have non-zero compo-

nents in the direction of the surface normal.

In order to maintain the de®nition of Q such that Hs and Ks

are purely in-plane indicies, we force cs to be oriented

perpendicular to the surface plane. This will be a useful

convention in the scattering formalism and ensures that Ls = 0

corresponds to having a zero perpendicular component of the

scattering vector. The basis transformation is then completed

with the relation

cs � xcsa� ycsb� zcsc; �4�
where cs is parallel to dHKL and [xcs, ycs, zcs] are not necessarily

all integers.

The unit cell de®ned by this set of surface basis vectors is a

crystallographic pseudo-cell owing to the potential lack of

translational symmetry along the cs axis. However, it will give

the correct two-dimensional net of cells de®ning the surface

layer of the bulk crystal (Fig. 2, top bulk layer). The genera-

tion of a space-®lling model then requires the introduction of

an additional bulk lattice vector, Vr, which describes the lattice

repeat of the surface coordinate system (Fig. 2). Therefore, Vr

is a vector from the common origin of the bulk and surface

coordinate systems which terminates at a bulk lattice point on

a plane parallel to (HKL) positioned at ÿndHKL, where n = 1,

2, 3 . . . refers to the nth plane below the surface origin (Fig. 1).

The magnitude of Vr projected onto the line perpendicular to

the surface then de®nes the magnitude of cs, which results in

|cs| = n|dHKL|, and cs = ndHKL can be substituted into equation
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Figure 1
Surface plane (HKL) de®ned in the bulk basis system (a, b, c). The origin
of the surface system is taken to be the same as the bulk, and the plane
(HKL), which makes the intercepts 1/H, 1/K and 1/L with a, b and c,
respectively, de®nes the crystal surface. Planes parallel to (HKL) spaced
at |dHKL| are de®ned with the index n, with n � 0 corresponding to planes
within the bulk crystal.
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(4). A reasonable choice for Vr can be found from considering

the lattice points to the ®rst several planes from the origin into

the bulk and choosing the bulk lattice vector that makes the

smallest angle with the vector ÿdHKL (Fig. 2).

We note that in these calculations the explicit form of dHKL

is required. The coef®cients of this vector in the bulk real-

space basis can be found from the reciprocal-lattice vector

HHKL = [H, K, L] using the transformation

dHKL � �g�ÿ1 HHKL=jHHKLj2; �5�
where

g �
a � a a � b a � c
b � a b � b b � c
c � a c � b c � c

0@ 1A �6�

is the metric tensor for the bulk lattice. Therefore, having

de®ned the vectors in bulk basis system which describe the

basis vectors and basis repeat for the surface coordinate

system, we can de®ne the basis transformation matrix, M,

where

M �
xas yas zas

xbs ybs zbs

xcs ycs zcs

0@ 1A �7�

and the transformation

Vr;s � �MT�ÿ1 Vr �8�

gives the coef®cients of Vr in the surface basis system. This

enables us to give a general form for the slab repeat vector in

the surface basis:

Vr;s � n3�1as � n3�2bs � n3cs; �9�
where the absolute values of �1 and �2 are determined from

equation (8). The integer index n3 is now the slab index, where

n3 = 0 refers to the slab that terminates the bulk crystal, and n3

< 0 refers to slabs within the bulk crystal (Fig. 2).

Given the de®nition of the surface basis system above, the

coordinates of atom j in cell (n1, n2, n3) are given by the vector

(in the surface coordinate frame)

Rj;s � rj;s � Ri;s�n1;2� � Vr;s�n3�; �10�
where the n's are integers (n3 � 0) and rj,s gives the fractional

coordinates of atom j in the unit cell de®ning the origin. The

vector Ri,s(n1,2) gives the in-plane coordinates for the origin of

cell (n1, n2) in the n3 slab,

Ri;s�n1; n2� � n1as � n2bs; �11�
and Vr,s gives the origin of cell (n1,2 = 0, n3).

Deriving the reciprocal lattice based on the de®nition of the

surface system real-space basis vectors, the scattering vector is

given by

Q � 2��Hsa
�
s � Ksb

�
s � Lsc

�
s �; �12�

where Hs and Ks give the degree of momentum transfer in the

surface plane and Ls gives the degree of momentum transfer

Figure 2
Surface coordinate system de®ned in the bulk real-space lattice. Solid dots are bulk lattice points. The vectors as and bs (which would point out of the
plane of the paper) are the bulk lattice vectors that de®ne the in-plane basis vectors in the surface coordinate system. The vector cs is the third surface
basis vector and is taken parallel to the surface normal (dotted line). The plane (HKL) at n3 = 1 corresponds to the termination of the bulk crystal. The
layer of surface cells at n3 = 0 de®nes the top layer of the bulk crystal, and layers at n3 � 0 are within the bulk crystal. The slab repeat vector, Vr, is the
bulk lattice vector which describes the repeat of the surface unit cell within the bulk. An additional layer of cells at n3 = 1 is included to account for
differences in stoichiometry or structure of the surface relative to the bulk material.



along the surface normal. The indices of a reciprocal-lattice

vector can be transformed from the bulk to the surface

indexing using the transformation

Hs

Ks

Ls

0@ 1A � M

H

K

L

0@ 1A �13�

and the reciprocal relation is given using the inverse of M. We

note that the reciprocal-lattice vectors describing bulk Bragg

points in the bulk indexing may have non-integer Ls values in

the surface indexing described above. However, a relationship

is provided below that easily allows the determination of

Bragg peak positions along a CTR.

3. Structure-factor calculations

We assume here that the scattering experiment is carried out

in the Bragg geometry using a `thick' sample with a single well

de®ned surface through which the incident and re¯ected X-

rays penetrate (Robinson, 1986). The intensity of the scattered

radiation measured at the detector is proportional to the

square of the magnitude of the structure factor, I / |F|2. The

structure factor may be written as a sum over all atoms in the

bulk sample (Warren, 1969):

Fb �
P

fj exp�iQ � Rj� exp�Bj�jQj=4��2�; �14�
where fj is the scattering factor for atom j, Rj is the position of

atom j in the sample, and Bj is the thermal disorder parameter.

Using the surface coordinate system de®ned above (Fig. 2),

the product Q � Rj may be calculated using equation (10) for

Rj and equation (12) for Q, which yields

Q � Rj � Q � rj;s �Q � Ri;s �Q � Vr;s; �15�
where the ®rst term is independent of n1,2,3, the second term

depends on n1,2 and the third term depends only on n3.

Substitution of equation (15) into equation (14) gives

Fb � Fbc

P�N1ÿ1�=2

n1�ÿ�N1ÿ1�=2

P�N2ÿ1�=2

n2�ÿ�N2ÿ1�=2

exp�iQ � Ri;s�
" #

�
X0

n3�ÿ1
exp�iQ � Vr;s� exp��n3�

" #
; �16�

where N1 and N2 are the numbers of unit cells along the in-

plane basis vectors (as and bs), and the third summation is over

all slabs of the bulk crystal. The factor � accounts for

attenuation of the beam as a function of depth into the crystal

and is given by � = �|cs|, where � is the mass absorption

coef®cient. Fbc is the structure factor for the unit cell, given by

Fbc �
Pm
j�1

fj exp�iQ � rj;s� exp�Bj�jQj=4��2�; �17�

where rj,s is the coordinate of atom j in the unit cell (in the

surface basis system) and the sum is over all m atoms in the

unit cell. The structure factor for total scattering by the bulk

terminated sample given by equation (16) has three inde-

pendent terms arising from, respectively, the coordinates of

the atoms in the unit cell (Fbc), the two-dimensional periodi-

city of cells in the slabs, and the stacking sequence of the slabs.

The summations over n1 and n2 in equation (16) are the typical

slit functions, where Q � Ri;s = 2�(n1Hs + n2Ks), and for integer

Hs and Ks give N1 and N2, respectively. Finally, given the

product Q � Vr;s = 2�(n3�1Hs + n3�2Ks + n3Ls), the sum over

n3 can be written as

FCTR �
P0

n3�ÿ1
exp�i2���1Hsn3 ��2Ksn3 � n3Ls�� exp��n3�

� 1=f1ÿ exp�ÿi2����� exp�ÿ��g; �18�
where � = �1Hs + �2Ks + Ls. We note that if �1 and �2 are

zero, corresponding to a crystallographic right-parallelepiped

surface unit cell, we recover the usual form of FCTR (Vlieg,

2000; Vlieg et al., 1989). In the limit �! 0, the magnitude of

FCTR is given by |FCTR|2 = 1/[4 sin2 (��)], which is in®nite for

integer values of �. Therefore, we identify integer � values as

bulk Bragg points and for integer (Hs, Ks), the values of Ls

corresponding to bulk Bragg points along a reciprocal-lattice

rod running perpendicular to the surface are given by

Ls � � ÿ�1Hs ÿ�2Ks; �19�
where � = 0, �1, �2 . . .

Therefore, the total scattering intensity from a bulk termi-

nated sample is given by

I / jFbj2 � N2
1N2

2 jFbcFCTRj2; �20�
where systematic absences will be correctly handled by the

corresponding value of Fbc. For integer Hs and Ks, there will be

a smooth drop in the scattering intensity as a function of Ls

away from a bulk Bragg re¯ection, I / |Fbc|
2/[4 sin2 (��)],

which gives the typical CTR pro®le as a function of perpen-

dicular momentum transfer.

4. Modified surfaces

To account for differences in stoichiometry or structure of the

surface relative to the bulk, an additional layer of cells is

included on top of the bulk terminated crystal at n3 = 1, as

shown in Fig. 2. We assume that this layer maintains the same

lattice parameters as the transformed bulk system [for

reconstructed surfaces the bulk cell may be de®ned in terms of

the reconstruction so that the surface and bulk maintain the

same lattice parameters (cf. Vlieg, 2000)]. The intensity of the

scattering from the surface layer alone is proportional to the

surface structure factor, which can be calculated using equa-

tion (16) with n3 = 1 and rj,s, fj and Bj referring to the atoms in

the surface-layer unit cell, which gives

Fs � Fsc exp�i2��� P�N1ÿ1�=2

n1�ÿ�N1ÿ1�=2

exp�i2�n1Hs�

� P�N2ÿ1�=2

n2�ÿ�N2ÿ1�=2

exp�i2�n2Ks�; �21�

where Fsc is the structure factor for the surface unit cell

[equation (17)]. The additional phase factor of exp(i2��)

J. Appl. Cryst. (2002). 35, 696±701 Thomas P. Trainor et al. � Crystal truncation rod structure factors 699
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simply shifts the fractional coordinates of the atoms to

correspond to the n3 = 1 layer, and we have ignored the

attenuation of the X-rays in the ®rst layer. The two summa-

tions over n1 and n2 are again the typical slit functions and give

N1 and N2, respectively, for integer Hs and Ks. Therefore,

equation (21) simpli®es to

Fs � N1N2Fsc; �22�

where the term exp(i2��) is included in Fsc. The total structure

factor is then given by the complex sum of the bulk and

surface structure factors,

FT � Fb � Fs � N1N2�FbcFCTR � Fsc�; �23�

and the measured intensity I will be proportional to

N2
1N2

2jFT j2.

Modi®cations in the structure and/or composition of the

surface with respect to the bulk will be expressed in the Fsc

term; therefore, the interference between the scattering from

the surface layer and that of the bulk will result in a structure

along the rod pro®les that is different from that expected for

the bulk termination. The most surface-sensitive parts of the

rod will be for perpendicular momentum transfer (Ls)

between bulk Bragg peaks, since this is where FCTR approa-

ches a minimal value.

5. Example

The �-Al2O3 (1�102) surface is used as a brief example of the

method outlined above. The cell parameters for the bulk

hexagonal unit cell are |a| = 4.757 and |c| = 12.988 AÊ (Kirfel &

Eichhorn, 1990). The unreconstructed (1�102) surface is char-

acterized by a rectangular surface mesh with as de®ned by the

[1 1 0] vector and bs de®ned by the [ÿ1/3 1/3 1/3] vector in the

bulk indexing (|as| = 4.757, |bs| = 5.127 AÊ ). The repeat vector is

chosen as Vr = [ÿ2/3 2/3 ÿ1/3], which terminates at the n =ÿ2

plane, and is approximately 5.9� off the surface-normal axis.

Therefore, normal to the surface we have |cs| = 6.957 AÊ

(= 2jd�1�12�j), which gives a cell containing 20 atoms (four Al2O3

units) and ten atomic layers thick. The choice of a cell thick-

ness of 2jd�1�12�j was made to allow for relaxations several

atomic layers deep into the surface unit cell. We note that the

fractional indices in the vectors given for bs and Vr are bulk

lattice vectors for the non-primitive hexagonal indexing of �-

Al2O3 and these vectors have all integer indices if transformed

to the primitive rhombohedral cell (Kelly & Groves, 1970).

Substitution of the vectors de®ning as, bs and cs into equation

(7) gives the transformation matrix

M �
1 1 0

ÿ1=3 1=3 1=3

0:713 ÿ0:713 0:287

0@ 1A �24�

and the indices of the repeat vector in the surface basis

calculated from equation (8) are �1 = 0 and �2 = 0.1391.

The experimental rod pro®les along with calculated pro®les

for the bulk un-relaxed termination and best-®t surface model

are depicted in Fig. 3. The experimental details and model

description are discussed elsewhere (Trainor et al., 2002). In

Fig. 3, the indices of the Bragg re¯ections in the bulk indexing

are shown, along with the corresponding values of �. The

pro®les are calculated according to equation (23) using the

surface system basis vectors de®ned in equation (24), and an

additional surface cell at n3 = 1 was included to allow for

relaxation of the surface structure. A good ®t to the data was

arrived at through adjustment of the structural parameters in

the Fsc term of equation (23), with the parameters for the bulk

structure factor ®xed.

Figure 3
Experimental structure factors (FT) as a function of perpendicular
momentum transfer (Ls in reciprocal-lattice units) for the �-Al2O3 (1�102)
surface. Structure factors were measured at beamline X16a at the NSLS,
and are corrected for active area, polarization, step size and Lorentz
factor (Robinson, 1991). The solid line is the best-®t model in which the
atoms in the surface cell are allowed to relax from there bulk positions.
Also ®tted are the atom occupancies, Debye±Waller factors and overall
roughness and scale factors. The dotted line is the calculated pro®le for
the bulk un-relaxed termination. The rod index in the surface coordinate
system is shown in bold. The solid vertical lines correspond to the
positions of bulk Bragg re¯ections, with the bulk index shown above the
line. Below the line are the values of Ls and � = �1Hs + �2Ks + Ls, where
�1 = 0 and �2 = 0.1391. Additional experimental details are given
elsewhere (Trainor et al., 2002).



6. Conclusions

We have presented a method for determining a consistent

surface coordinate system for surface-diffraction experiments

and, based on this geometry, derived a simple generalization

for the calculation of CTR structure factors. This approach

allows similar data collection and analysis procedures to be

applied to any crystal surface that can be represented as a

rational plane of a bulk crystal system. However, the model

presented here is based on a crystallographic pseudo-cell that

requires the de®nition of an additional repeat vector (Vr) and

may result in having bulk Bragg re¯ections occur at non-

integer Ls positions.

An alternative indexing approach in which cs is de®ned with

an off-normal lattice vector may be used to de®ne a crystal-

lographic surface unit cell. However, the surface indexing

presented in this work is convenient for surface-diffraction

experiments since it forces the components of all real- and

reciprocal-space vectors to be expressed in terms of basis

vectors that are parallel and perpendicular to the surface

plane. Therefore, the CTRs arising from a rational termination

of a crystal are always indexed using integer indices (Hs and

Ks) to de®ne the in-plane component of the scattering vector

(Q||) and a single continuous variable (Ls) which gives the

component of the scattering vector perpendicular to the

surface plane (Q?). The zero perpendicular momentum

transfer always corresponds to Ls = 0, thus eliminating the

need for a separate calculation for each rod as would be the

case if a non-perpendicular cs were chosen.

Furthermore, this approach allows surface-atom relaxa-

tions, as well as anisotropic Debye±Waller factors, to be

treated in a straightforward manner in model calculations.

Typically the relaxation of surface atoms is greatest in the

direction perpendicular to the surface plane, while in-plane

motions may be constrained by the plane-group symmetry of

the surface. Since the atomic fractional coordinates are

de®ned in terms of directions parallel and perpendicular to the

surface, a single modeling approach consistent with estab-

lished routines (cf. Vlieg, 2000) is easily applied to any rational

surface termination. Detailed information on the surface

termination and relaxation can be found from model ®ts to the

CTR data, where occupancies, atomic coordinates and thermal

disorder parameters in Fsc are used as ¯oating variables.

Additional details of CTR analysis, such as inclusion of surface

roughness, multiple domains or multiple surface cells, are

treated in the same fashion as described previously (Vlieg,

2000).

We thank Alexis Templeton for helpful discussions and
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