A solution to the crystallographic “phase problem” was proposed by David Sayre immediately after the announcement of Shannon’ Information Theorem, requiring the diffraction to be sampled more than twice as finely as the Bragg peak spacing [1]. The implicit need for X-ray coherence has been happily solved with the development of the latest synchrotron sources, where Bragg Coherent Diffraction Imaging (BCDI) experiments are routinely performed. The fringed diffraction patterns can be oversampled so as to overdetermine the phase problem. Conventional projection-based iterative algorithms converge on the solution. Despite meeting all the oversampling requirements of Sayre and Shannon, current projection-based iterative phase retrieval approaches still have trouble achieving a unique inversion of experimental data in the presence of noise. We propose to overcome this limitation by employing Machine Learning in a Convolutional Neural Network model, which combines supervised training with unsupervised refinement. Remarkably, our model can be used without any prior training to learn the missing phases of an image based on the minimization of an appropriate “loss function” alone. We demonstrate significantly improved performance with experimental Bragg CDI data over traditional iterative phase retrieval algorithms [1,2].

![Figure 1: BCDI images of a SrTiO\textsubscript{3} nanocrystal reconstructed with traditional “shrinkwrap” iterative algorithms (left three examples) and the new Machine Learning approach (right)](image-url)

MS Microsymposium

Keywords: Machine Learning; Phase problem; Nanocrystal Structure; Coherent Imaging

To be published in Acta Crystallographica Section A (2020), Vol. 76.