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6.3 Thermal Behaviour of free electron gas
6.3.1 Review of Fermi function

The key point about electrons in a metal is that the Fermi tempera-
ture Tk is high — about 10° K.
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Even if we zoom in, we can only just see the change from the step
function at normal temperatures.
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This means that temperature has very little effect on the energy dis-
tribution of the electrons.



6.3.2 Electronic specific heat

To a good approximation, we can approximate the effect of tempera-
ture by drawing a straight line passing through frp(EpR) = % falling
from fFD(EF — QkBT) =1to fFD(EF + QkBT) = 0.

Temperature 100 K
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Thus the effect of increasing temperature changes the energy of the
number of electrons in a triangular region of height ¢(Er)/2 and
width 2kgT, that is, %g(EF)kBT. These have their energy increased

by about kT (%kBT If we keep to the triangular model), so that

1
Eiotal = Eo + §Q(EF)/~€BT x kpT,

so that the electronic specific heat is
dFE
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A more accurate evaluation gives
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If we take a typical Fr ~ 5 ¢V then at 300 KC,, ~ 0.2 J K~ mol~!

This is less than one percent of the specific heat from vibrations{
25 J K~ tmol 1,




6.3.3 Experimental results

At low temperatures, though, the vibrational contribution falls off
as 7%, so the vibrational and electronic parts become comparable.
Conventionally write

Cy =~T + AT?

at low T, and so a plot ofC,, /T againstT should give a straight line.
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Experimental heat capacity values for potassium, plotted as C/T versus T%. -

Key point treating the electrons as quantum mechanical particles

has shown their specific heat is reduced by a factor of aboutzT'/ E
from the classical result.



6.4 Electrical Conductivity
6.4.1 Classical treatment

A particle acted on by a forceF experiences a change in momentum

dp
F=_=
dt’
and for a classical particle
dv

We know that the electrons in a metal have speeds ranging up to
~ 109 m s71, in random directions, so that there is no nett movement
of electrons in a particular direction. We assume that the force adds
a general tendency for the electrons to move in the direction of the
force. We call the associated velocity drift velocity, v, and write

dVd



The electrons will move freely through a perfect crystal — but the
perfection is disturbed by

e defects

—Iimpurities (not different isotopes — these affect phonons as they
have different masses but not electrons as they are electrically
identical)

—dislocations
—grain boundaries

e phonons, locally altering the atomic spacings
e IN addition, there may be electron-electron interactions



6.4.2 Relaxation time

Introduce a scattering timeor relaxation timer:

e the probabillity of an electron’s being scattered in the time interval
dtisdt/T

e at each scattering event the velocity is randomised — the drift ve-
locity Is reset to zero

e SO the rate at whichv,4 returns to zero is

( dvd ) B Ud
dt scatter T

e We may have different scattering timesr for different types of
scattering — the different processes are assumed to be independent
(Matthiessen’s ruleg

e We can also introduce amean free path\: but note that the elec-
trons have the Fermi velocityvr as well as the drift velocityv, and
vq << vp, SO the distance travelled in the timer Is

/\:TUF.



So the evolution ofvy with time is

dVd V{ B
m[dt + T] = F.

There are two iImportant cases:

e Steady statethe time derivative is zero, so
V{ B

m— = F,

-
FT
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e Zero force then

dvg vyq
+ = 0,
dt T

va(t) = va(0)e "7,
showing arelaxation of the drift velocity back to zero with a time
constantr.




6.4.3 Electrical conductivity

If the force arises from an electric field€ then
F = —e&

(note that e is the magnitudeof the charge on the electron — hence the
minus sign).
So the steady-state drift velocity is

Vg = ——,
m

which is often expressed in terms of anobility 4,

(1 = drift speed in unit field
val
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Now the electrical current densityJ is

J = (electron charge) x (number of electrons/volume) x (drift velocity)
Ne

Ne
7
This gives usOhm’s law, current proportional to field. If we write

n = N./V, we have

J = oc&
ner
o
m
= nej.

The quantity © = er/m, which is the magnitude of the drift velocity
acquired in unit field, is called the mobillity of the electron.
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