Workshop 8

1. Consider a right circular cone of base radius R and height H placed up-side down such that its tip is at the origin and its axis coincides with the zaxis. Describe the cone in all the 3 coordinate systems; namely, rectangular, cylindrical and spherical.
(For example, a sphere with radius R with center at the origin is described in rectangular coordinates as $x^{2}+y^{2}+z^{2}=R^{2}$ and in spherical coordinates as $\rho=R$.)
2. A particle P moves in the plane. The Rectangular Observer computes the magnitude of the speed and acceleration of P by observing the x - and y-coordinates of P (as functions of time) and using these formulas: speed $=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$ and acceleration $=$ $\sqrt{\left(\frac{d^{2} x}{d t^{2}}\right)^{2}+\left(\frac{d^{2} y}{d t^{2}}\right)^{2}}$.

Another observer, the Polar Observer, finds it easier and more natural to measure the polar coordinates r and θ of P (as functions of time), using herself as the origin, of course. The Polar Observer computes $\frac{d r}{d t}, \frac{d \theta}{d t}, \frac{d^{2} r}{d t^{2}}$, etc. What formula should the Polar Observer use to compute the speed of the particle P ? Deduce your answer from the formula for speed displayed above and the relationships among x, y, r, and θ. Finally, if r and $\frac{d \theta}{d t}$ are constant, derive the following formula, valid for uniform circular motion: acceleration $=(\text { speed })^{2} / r$.

