Workshop 6

1. One of the Bessel functions used to describe the vibration of a circular plate is defined by this infinite series:

$$
J(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

(1) Show that this series converges absolutely for all values of x.
(2) Here are individual terms of the series for two values of x and for some values of n.

$\frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$x=1$	1	$-\frac{1}{4}$	$\frac{1}{64}$	$-\frac{1}{2,304}$	$\frac{1}{147,456}$	$-\frac{1}{14,745,600}$
$x=4$	1	-4	4	$-\frac{16}{9}$	$\frac{4}{9}$	$-\frac{16}{225}$

Use entries of this table and facts about the series to explain why $J(1)$ must be positive and $J(4)$ must be negative.

Hint: Select an N for each x and split the sum: $\sum_{n=0}^{\infty}=\sum_{n=0}^{N}+\sum_{n=N+1}^{\infty}$. Evaluate the finite sum explicitly and estimate the infinite tail $\sum_{n=N+1}^{\infty}$.
2. a) Use the formula $\frac{a}{1-r}=a+a r+a r^{2}+a r^{3}+\cdots$ valid for $|r|<1$ to express each of the following functions as a power series $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$.

Give a formula for the coefficient a_{n} in each case.

$$
f(x)=\frac{x}{1-x} ; \quad g(x)=\frac{2}{3 x^{4}+16} .
$$

b) Determine the interval of x values in which each series in part a) converges (be sure to consider the endpoints).
c) Use your answer to a) to express $\int_{0}^{1} \frac{2}{3 x^{4}+16} d x$ as the sum of an infinite series.
3. Suppose that you have a power series $\sum_{n=1}^{\infty} a_{n} x^{n}$, whose interval of convergence is $(-1,1]$.
(1) Using the same numbers a_{n} (adjusting them a little, if required), come up with a new power series whose interval of convergence is $(0,2]$.
(2) Using the same numbers a_{n} (adjusting them a little, if required), come up with a new power series whose interval of convergence is $(-2,2]$.
(3) Using the same numbers a_{n} (adjusting them a little, if required), come up with a new power series whose interval of convergence is $[-1,1)$. (Hint: What "transformation" would turn the interval $(-1,1]$ into $[-1,1) ?$)
(4) Putting together ideas from previous parts of this question, come up with a new power series whose interval of convergence is $[10,20)$.

In each case, give reasons for your answers.

