Workshop 6

1. One of the Bessel functions used to describe the vibration of a circular plate is defined by this infinite series:

$$J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2} \,.$$

- (1) Show that this series converges absolutely for all values of x.
- (2) Here are individual terms of the series for two values of x and for some values of n.

$\frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$	n = 0	n = 1	n = 2	n = 3	n = 4	n = 5
x = 1	1	$-\frac{1}{4}$	$\frac{1}{64}$	$-\frac{1}{2,304}$	$\frac{1}{147,456}$	$-\frac{1}{14,745,600}$
x = 4	1	-4	4	$-\frac{16}{9}$	$\frac{4}{9}$	$-\frac{16}{225}$

Use entries of this table and facts about the series to explain why J(1) must be positive and J(4) must be negative.

Hint: Select an N for each x and split the sum: $\sum_{n=0}^{\infty} = \sum_{n=0}^{N} + \sum_{n=N+1}^{\infty}$. Evaluate the finite sum explicitly and estimate the infinite tail $\sum_{n=N+1}^{\infty}$.

2. a) Use the formula $\frac{a}{1-r} = a + ar + ar^2 + ar^3 + \cdots$ valid for |r| < 1 to express each of the following functions as a power series $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$.

Give a formula for the coefficient a_n in each case.

$$f(x) = \frac{x}{1-x}; \quad g(x) = \frac{2}{3x^4 + 16}.$$

b) Determine the interval of x values in which each series in part a) converges (be sure to consider the endpoints).

c) Use your answer to a) to express $\int_0^1 \frac{2}{3x^4 + 16} dx$ as the sum of an infinite series.

- **3.** Suppose that you have a power series $\sum_{n=1}^{\infty} a_n x^n$, whose interval of convergence is (-1, 1].
 - (1) Using the same numbers a_n (adjusting them a little, if required), come up with a new power series whose interval of convergence is (0, 2].
 - (2) Using the same numbers a_n (adjusting them a little, if required), come up with a new power series whose interval of convergence is (-2, 2].
 - (3) Using the same numbers a_n (adjusting them a little, if required), come up with a new power series whose interval of convergence is [-1, 1). (Hint: What "transformation" would turn the interval (-1, 1] into [-1, 1)?)
 - (4) Putting together ideas from previous parts of this question, come up with a new power series whose interval of convergence is [10, 20).

In each case, give reasons for your answers.