Question:

The linear approximation for the function $f(x)=x^{5}$ near $x=2$ is $32+80(x-2)$. (You should check this!)
a) What number a will give a good quadratic approximation $x^{5} \approx 32+80(x-2)+a(x-2)^{2}$ near $x=2$?
b) If this approximation is used for various x 's in the interval [2, 2.1], can you be certain that the error is no bigger than .05? Explain, using Taylor's inequality (the Error Bound).
c) Graph $x^{5}-\left(32+80(x-2)+a(x-2)^{2}\right)$ (using the value of a previously found) in the interval $[2,2.1]$.

Question:

Suppose $f(x)=e^{x^{2}+\sin x}$. Here are values of f and some of its derivatives at 0 :

$$
f(0)=1 ; \quad f^{\prime}(0)=1 ; \quad f^{\prime \prime}(0)=3 ; \quad f^{(3)}(0)=6 ; \quad f^{(4)}(0)=21 ; \quad f^{(5)}(0)=52 .
$$

Below are graphs of $f^{(3)}(x), f^{(4)}(x)$, and $f^{(5)}(x)$ on the interval [-.5, .5].

Graph of $f^{(3)}(x)$ on $[-.5, .5]$

Graph of $f^{(4)}(x)$ on $[-.5, .5]$

Graph of $f^{(5)}(x)$ on $[-.5, .5]$

Assume this information is correct. No additional computation of the values of f or any of its derivatives is needed for this problem.
a) What is the second degree Taylor polynomial centered at 0 of f ? Do no unnecessary arithmetic!
b) Find a polynomial $P(x)$ so that $|P(x)-f(x)|<.01$ for all x in the interval $\left[-\frac{1}{4}, \frac{1}{4}\right]$. You should write the polynomial and explain why the error is less than $.01=\frac{1}{100}$.

