Workshop 1

1. a) Compute the area of the bounded region enclosed by the curve $y=e^{x}$, the line $y=12$, and the y-axis.
b) How does this area compare with the value of the integral $\int_{1}^{12} \ln x d x$? Explain your answer. (A picture may be helpful.)
2. Sketch the region R defined by $1 \leq x \leq 2$ and $0 \leq y \leq 1 / x^{3}$.
a) Find (exactly) the number a such that the line $x=a$ divides R into two parts of equal area.
b) Then find (to 3 places) the number b such that the line $y=b$ divides R into two parts of equal area.
3. Suppose R is the region in the plane bounded below by the curve $y=x^{2}$ and above by the line $y=1$.
a) Sketch R. Set up and evaluate an integral that gives the area of R.
b) Suppose a solid has base R and the cross-sections of the solid perpendicular to the y-axis are squares. Sketch the solid and find its volume.
c) Suppose a solid has base R and the cross-sections of the solid perpendicular to the y-axis are equilateral triangles. Sketch the solid and find its volume.
4. A freely falling body starting from rest has velocity $v=g t$ and displacement $s=\frac{1}{2} g t^{2}$ where t is the time elapsed since rest. Suppose the freely falling body starts at rest and falls 1,000 feet.
a) Calculate the time T (in seconds) this takes (here $g=32 \mathrm{ft} / \mathrm{s}^{2}$) and the time average of the velocity of the body: $v_{\text {time aver }}=\frac{1}{T} \int_{0}^{T} v(t) d t$. Draw a graph of the function $v(t)$ for $0 \leq t \leq T$. Find the time t when $v(t)=v_{\text {time aver }}$ and give a graphical interpretation.
b) Find a formula for the velocity as a function $f(s)$ of displacement s, and calculate the distance average of the velocity: $v_{\text {dist aver }}=\frac{1}{1000} \int_{0}^{1000} f(s) d s$. Draw a graph of the function $v=f(s)$ for $0 \leq s \leq 1000$. Find the distance s that the body has fallen when $f(s)=v_{\text {dist aver }}$ and give a graphical interpretation.

Note: $v_{\text {dist aver }} \neq v_{\text {time aver }}!$

