640:151 Calculus II, Spring 2012
 Exam \#1 Part I Questions

A typical 80-minute midterm consists of 2 "Part I" questions and 4-7 "Part II" questions, 12-16 points each. Answers given without any explanation or justification (words, phrases/sentences, and algebraic steps) may be given minimal credit.

PART I - CALCULUS I CONCEPTS

 Two questions similar to the types listed below will be chosen1. Draw a graph for each function, and state the domain/range

$$
\sin x \quad \cos x \quad \tan x \quad \csc x \quad \sec x \quad \cot x
$$

2. Give the definition for each function, draw a graph, and state the domain/range

$$
\arcsin x \quad \arccos x \quad \arctan x
$$

3. Give the definition for each function, draw a graph, and state the domain/range

$$
\sinh x \quad \cosh x \quad \tanh x \quad \operatorname{csch} x \quad \operatorname{sech} x \quad \operatorname{coth} x
$$

4. Determine whether the function is increasing, decreasing, even, odd or none of the above

$$
\frac{n^{2}}{2^{n}} \quad 3^{x} \quad \pi \sin (t+1) \quad v^{4}-3 v^{2} \quad e^{-x^{2}} \quad \ln \frac{1}{q}
$$

5. Determine the limit

$$
\lim _{x \rightarrow-1^{+}} \frac{1}{x+1} \quad \lim _{x \rightarrow \infty} \frac{x^{5}+x^{2}+10}{4 x^{5}+x^{4}+x+1} \quad \lim _{x \rightarrow b} \frac{x^{3}-b^{3}}{x-b} \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

6. Calculate the derivative

$$
\ln (\sinh z) \quad z \csc \left(e^{5 z+1}+17\right) \quad \frac{x^{4}+\sqrt{x}}{x^{2}} \quad(t+1)^{3}\left(1+\frac{1}{t}\right)^{4 / 5} \quad 5^{\arcsin r}
$$

7. State the antiderivative
$\ln x \quad \tan x \quad \sec \theta \quad \frac{1}{1+s^{2}} \quad 5^{r} \quad \csc z \cot z \quad \frac{1}{u}$
