Your first midterm examination is likely to contain some problems that do not resemble these review problems.

I. Applications of Integration

(1-3) Find the volumes of the solids obtained by rotating the indicated region \mathcal{R} in the $x y$-plane about the specified axis:
(1) Region: \mathcal{R} is bounded by $y=1, y=\ln x$ and $x=e^{2}$.

Axes: (a) the line $y=-1 ; \quad$ (b) the line $x=-2$.
(2) Region: \mathcal{R} consists of all points (x, y) with $0 \leq x \leq \pi$ and $0 \leq y \leq \sin x$.

Axes: $(2 a)$ the line $y=-2 ; \quad(2 b)$ the line $x=-1$.
(3) Region: \mathcal{R} is bounded by $x=y(4-y)$ and the y-axis

Axis: the y-axis.
(4) Write down the integral used to compute the work done against gravity in building a granite pyramid 500 feet high with a square base of side length 800 feet. Take the density of granite as 170 lbs per cubic foot. Explain in detail how the integral is obtained.

(5) There is a point x_{0} in the interval [5,7] where the function $f(x)=\left(x^{2}-4\right)^{-1 / 2}$ takes on its average value over that interval.
(a) How do we know that? (b) Find such a point x_{0}.

II. Numerical Methods

(6) How many subintervals of $[0,2]$ should we use to ensure an accuracy within 10^{-6} when we approximate $\int_{0}^{2} 4 x^{3}-x^{4} d x$ using:
(a) the Midpoint Rule?;
(b) Simpson's Rule?
(7) A certain integral $\int_{1}^{4} f(x) d x$ is approximated by the Trapezoidal Rule using 30 intervals, and the approximation found is 3.14286 . The graph of $f^{\prime \prime}(x)$ is shown here. Find a range of values $[a, b]$ such that the exact value of the integral can be guaranteed to lie within that range, and explain your method. (The numbers a and b should be given to at most 3 decimal places accuracy.)

Figure 1: $f^{\prime \prime}$

III. Techniques of Integration

(8) Evaluate the following integrals.
(a) $\int \sin ^{3} x \cos ^{4} x d x$
(b) $\int \sec ^{4} x d x$
(c) $\int \tan ^{5} x \sec ^{3} x d x$
(d) $\int \sec ^{3} x d x$
(9) Evaluate the following integrals. Integral (g) is very difficult unless you are given the following hint: The function $\frac{1}{1+e^{x}}-\frac{1}{2}$ is an odd function.
(a) $\int x^{5}(\ln x)^{2} d x$
(b) $\int \frac{d x}{x \ln x}$
(c) $\int \cos (\sqrt{x}) d x$
(d) $\int x^{2} \tan ^{-1} x d x$
(e) $\int x^{-2} \sin ^{-1} x d x$
(f) $\int e^{\sqrt{x}} d x$
(g) $\int_{-\pi / 2}^{\pi / 2} \frac{\cos (x)}{1+e^{x}} d x$
(10) Evaluate the following integrals.
(a) $\int \frac{d x}{\left(25+x^{2}\right)^{2}}$
(b) $\int \frac{x d x}{\left(x^{2}+36\right)(x+1)}$
(c) $\int \frac{d x}{\sqrt{2 x-x^{2}}}$
(d) $\int \frac{x^{2}-x+4}{(x-5)(x+3)^{2}} d x$
(e) $\int \frac{x^{2} d x}{\left(16-x^{2}\right)^{3 / 2}}$
(f) $\int \frac{d x}{x^{2}+4 x+9}$
(11) Evaluate $\int \sin (\ln x) d x$ using two integrations by parts. Would another method work?
(12) Evaluate the following improper integrals:

$$
\int_{5}^{\infty} \frac{d x}{(x-3)(x-4)} \quad \int_{0}^{1} \ln x d x \quad \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}} \quad \int_{-\infty}^{\infty} \frac{d x}{9+x^{2}}
$$

(13) Show that one of these improper integrals converges, and that one them diverges:

$$
\int_{7}^{\infty} \frac{d x}{x-|\cos (x)|} \quad \int_{5}^{\infty} \frac{d x}{e^{x^{2}}}
$$

