LTCC: Representation Theory of Finite Groups Exercise Set 5

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

1. (From lecture) Prove part (ii) of Clifford's Theorem: Suppose $H \triangleleft G$, χ is an irreducible character of $G, \psi_{1}, \ldots \psi_{m}$ the constituents of $\chi \downarrow H$. Then $\left\langle\chi \downarrow H, \psi_{i}\right\rangle$ is the same for all ψ_{i}.
Solution: Let V be the $\mathbb{C}[G]$-module with character χ, U_{i} the $\mathbb{C}[H]$-module with character ψ_{i}, and suppose $\left\langle\chi \downarrow H, \psi_{1}\right\rangle=d$. Then $V \downarrow H$ has a $\mathbb{C}[H]$-submodule X_{1} such that X_{1} is the direct sum of d copies of U_{1}. We have seen in the proof of part (i) of Clifford's Theorem that $U_{i}=g U_{1}$ for some $g \in G$, so $g X_{1}$ must decompose into d copies of U_{i}, and thus $\left\langle\chi \downarrow H, \psi_{i}\right\rangle=d$ for all i.
2. Suppose H is a subgroup of G of index 2 (hence, normal).
(a) Let χ be a character of G. Show that $\chi \downarrow H$ is either irreducible or is the sum of two distinct irreducible characters of H of the same degree.
Solution: Let $\chi \downarrow H=d_{1} \psi_{1}+\cdots+d_{k} \psi_{k}$ where $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ are the irreducible of characters of H. Then $\sum_{i} d_{i}^{2} \leq 2$, so either $\chi \downarrow H=\psi_{i}$ or $\chi \downarrow H=\psi_{i}+\psi_{j}$ for some $i \neq j$. In the latter case, we know ψ_{i} and ψ_{j} have the same degree by Clifford's Theorem.
(b) Show that $\chi \downarrow H$ is irreducible iff $\chi(g) \neq 0$ for some $g \in G-H$.

Solution: As before, let $\chi \downarrow H=d_{1} \psi_{1}+\cdots+d_{k} \psi_{k}$ where $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$ are the irreducible of characters of H. By Prop 2 of Section 5.1, we know $\sum_{i} d_{i}^{2}<2$ iff $\chi(g) \neq 0$ for some $g \in G-H$. Thus, $\chi(g) \neq 0$ for some $g \in G-H$ iff $\sum_{i} d_{i}^{2}=1$, in which case $\chi \downarrow H=\psi_{i}$ for some i (and hence is irreducible).
(c) Show that G has a linear character λ such that

$$
\lambda(g)=\left\{\begin{aligned}
1 & \text { if } g \in H \\
-1 & \text { if } g \notin H
\end{aligned}\right.
$$

Solution: We observe that $G / H \cong C_{2}$ in this case, and C_{2} has a character ξ such that $\xi(e)=1$ and $\xi(x)=-1$ for $x \neq e$. The lift λ of this character is given by $\lambda(g)=\xi(g H)$, and hence $\lambda(g)=1$ if $g \in H$ and $\lambda(g)=-1$ if $g \notin H$.
(d) Show that $\chi \downarrow H$ is irreducible iff χ and $\chi \lambda$ are not equal characters.

Solution: We have seen in part (b) that $\chi \downarrow H$ is irreducible iff $\chi(g) \neq 0$ for some $g \in G-H$. In this case, $(\chi \lambda)(g)=\chi(g) \lambda(g)=-\chi(g) \neq \chi(g)$.
3. Given that the complete list of degrees of the irreducible characters of S_{7} is

$$
1,1,6,6,14,14,14,14,15,15,20,21,21,35,35
$$

and that A_{7} has nine conjugacy classes, find the complete list of degrees of the irreducible characters of A_{7}.
Solution: Since $\left[S_{7}: A_{7}\right]=2$, we know that each character of S_{7} either restricts to an irreducible character of A_{7} or is the sum of two irreducible characters of equal degree, and by part (d) of the previous exercise, we know $\chi \downarrow A_{7}$ is irreducible iff χ and $\chi \lambda$ are not equal characters (where λ is defined in part (c)), and these characters would have the same degree and have the same restriction to A_{7}. Conversely, characters of S_{7} which are unique of some fixed degree must restrict to the sum of two distinct irreducible characters of A_{7}.
Since 20 occurs only once in the list of degrees for S_{7}, the restriction of the irreducible character of degree 20 to A_{7} must be the sum of two different irreducible characters of degree 10. From the remaining fourteen irreducible characters of S_{7}, after restricting to A_{7} we get at least seven irreducible characters of A_{7}, and we get precisely seven if and only if the restriction of each of the fourteen characters is irreducible. Since A_{7} has exactly nine conjugacy classes, we must in fact have only these seven irreducible characters (in addition to the two we have already obtained of degree 10). Thus, the list of degrees of the irreducible characters of A_{7} are:

$$
1,6,14,14,15,10,10,21,35
$$

4. Let $G=S_{4}$ and let H be the subgroup $\left\langle\left(\begin{array}{ll}1 & 2\end{array} 3\right)\right\rangle \cong C_{3}$. Calculate the induced characters $\psi_{i} \uparrow G$ for each irreducible character ψ_{i} of H. Decompose each of these as a sum of the irreducible characters χ_{i} of G. (You may use the tables given in lecture.)
Solution: Since $\psi \uparrow G(g)=\frac{1}{|H|} \sum_{y \in G} \dot{\psi}\left(y^{-1} g y\right)$, we have $\psi \uparrow G(e)=\frac{|G|}{|H|} \psi(e)$, so $\psi_{i} \uparrow G(e)=8$ for all i (since the characters of C_{3} are all linear).

Next, we observe that the elements in S_{7} conjugate to (123) are the other 3-cycles, and in particular, for $y \in S_{7}$, we have $y(123) y^{-1}=(y(1) y(2) y(3))$. Therefore, $y(123) y^{-1} \in H$ iff $y(4)=4$, so there are 6 elements that satisfy this (since $\left|S_{3}\right|=6$).

We therefore compute:

$$
\begin{aligned}
& \psi_{1} \uparrow G\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\frac{1}{3} \sum_{y \in G} \dot{\psi}_{1}\left(y^{-1}\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) y\right)=\frac{1}{3} 6=2 \\
& \psi_{2} \uparrow G\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\frac{1}{3} \sum_{y \in G} \dot{\psi}_{2}\left(y^{-1}\left(\begin{array}{ll}
1 & 2
\end{array} 3\right) y\right)=\frac{1}{3}\left(3 \omega+3 \omega^{2}\right)=-1 \\
& \psi_{3} \uparrow G\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)=\frac{1}{3} \sum_{y \in G} \dot{\psi}_{3}\left(y^{-1}\left(\begin{array}{ll}
1 & 2
\end{array} 3\right) y\right)=\frac{1}{3}\left(3 \omega^{2}+3 \omega\right)=-1 .
\end{aligned}
$$

For any nonidentity element $g \in S_{4}$ such that g is not a 3 -cycle, we have

$$
\psi_{i} \uparrow G(g)=0
$$

Therefore, by taking inner products with the irreducible characters of S_{4}, we have:

$$
\begin{aligned}
& \psi_{1} \uparrow G=\chi_{1}+\chi_{2}+\chi_{4}+\chi_{5} \\
& \psi_{2} \uparrow G=\chi_{3}+\chi_{4}+\chi_{5} \\
& \psi_{3} \uparrow G=\chi_{3}+\chi_{4}+\chi_{5} .
\end{aligned}
$$

5. Suppose that H is a subgroup of G, and let $\chi_{1}, \ldots, \chi_{k}$ be the irreducible characters of G. Let ψ be an irreducible character of H. Given $\psi \uparrow G=d_{1} \chi_{1}+\cdots+d_{k} \chi_{k}$, show that

$$
\sum_{i} d_{i}^{2} \leq[G: H] .
$$

Solution: We observe $d_{i}=\left\langle\psi \uparrow G, \chi_{i}\right\rangle=\left\langle\psi, \chi_{i} \downarrow H\right\rangle$, by the Frobenius Reciprocity Theorem. Hence, since ψ is irreducible, $\chi_{i} \downarrow G=d_{i} \phi+\xi$ where either ξ is a character of H or $\xi=0$. Therefore, $\chi_{i}(e) \geq d_{i} \psi(e)$.
Since $[G: H] \psi(e)=d_{1} \chi_{1}(e)+\cdots+d_{k} \chi_{k}(e)$, we have

$$
[G: H] \psi(e) \geq d_{1}^{2} \psi(e)+\cdots+d_{k}^{2} \psi(e)
$$

and hence the result follows.
6. Suppose H is a subgroup of G of index 2 (hence, normal). Let ψ be am irreducible character of H. Show that $\psi \uparrow G$ is either irreducible or is the sum of two distinct irreducible characters of G of the same degree.
Solution: Let $\chi_{1}, \ldots, \chi_{k}$ be the irreducible characters of G. Given $\psi \uparrow G=d_{1} \chi_{1}+$ $\cdots+d_{k} \chi_{k}$, we know from the previous exercise that

$$
\sum_{i} d_{i}^{2} \leq[G: H]=2
$$

Therefore, $\psi \uparrow G=\chi_{i}$ or $\psi \uparrow G=\chi_{i}+\chi_{j}$ for some $i \neq j$.
In the latter case, we have $2 \psi(e)=\chi_{i}(e)+\chi_{j}(e)$. Moreover, by Frobenius Reciprocity, we have $\left\langle\psi, \chi_{i} \downarrow H\right\rangle=\left\langle\psi \uparrow G, \chi_{i}\right\rangle=1$, so by Q2a, we have $\chi_{i}(e)=\psi(e)$ or $\chi_{i}(e)=2 \psi(e)$. The same argument applies to χ_{j} as well as χ_{i}, and hence we must have $\chi_{i}(e)=\psi(e)=\chi_{j}(e)$. Therefore, χ_{i} and χ_{j} have the same degree in this case.
7. Let $G=S_{4}$. Find the characters ϕ^{λ} of all the permutation modules M^{λ}.

Solution: The permutations of 4 are:

$$
(4),(3,1),(2,2),(2,1,1),(1,1,1,1) .
$$

Therefore, the characters (obtained by finding the number of tabloids of indexing partition shape λ fixed by the given element g_{i}) are:

$g_{i}:$	e	(12)	$(12)(34)$	(123)	(1234)
$\phi^{(4)}$	1	1	1	1	1
$\phi^{(3,1)}$	4	2	0	1	0
$\phi^{(2,2)}$	6	2	2	0	0
$\phi^{(2,1,1)}$	12	2	0	0	0
$\phi^{(1,1,1,1)}$	24	0	0	0	0

The following is not required for this exercise, but observe that, using the numbering in the character table of S_{4} from lecture, we have:

$$
\begin{aligned}
\phi^{(4)} & =\chi_{1} \\
\phi^{(3,1)} & =\chi_{4}+\chi_{1} \\
\phi^{(2,2)} & =\chi_{3}+\chi_{4}+\chi_{1} \\
\phi^{(2,1,1)} & =\chi_{5}+\chi_{3}+2 \chi_{4}+\chi_{1} \\
\phi^{(1,1,1,1)} & =\chi_{2}+2 \chi_{3}+3 \chi_{4}+\chi_{1} .
\end{aligned}
$$

8. The permutation modules M^{μ} decompose as a direct sum of Specht modules S^{λ} with $\lambda \leq \mu$ in reverse lexicographic order. In fact, we have a nice combinatorial way
of computing the multiplicities of the S^{λ} in this decomposition: the multiplicity of S^{λ} in M^{μ} is given by the Kostka numbers $K_{\lambda \mu}$, which equal the number of tableau of shape λ filled with μ_{1} copies of $1, \mu_{2}$ copies of 2 , etc, with the filling weakly increasing across rows (each entry is greater than or equal to the one to its left) and strictly increasing down columns (each entry is strictly greater than the one above it). [We call these semistandard tableau of shape λ with content μ.]
Decompose the following modules into a direct sum of Specht modules.
(a) $M^{(2,1)}$

Solution: We have the following semistandard tableau satisfying the given conditions:

$$
\begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline
\end{array} \quad \begin{array}{|l|l|}
\hline 1 & 1 \\
\hline 2 & \\
\hline
\end{array}
$$

Therefore, $M^{(2,1)}=S^{(3)} \oplus S^{(2,1)}$.
(b) $M^{(1,1,1,1)}$

Solution: We have the following semistandard tableau satisfying the given conditions:

1	2	3	4

1	2	3
4		

1	2	4
2		

1	3	4
2		

1	2
3	4

1	3
2	4

Therefore, $M^{(1,1,1,1)}=S^{(4)} \oplus 3 \cdot S^{(3,1)} \oplus 2 \cdot S^{(2,2)} \oplus 3 \cdot S^{(2,1,1)} \oplus S^{(1,1,1,1)}$.
(c) $M^{(2,2,1)}$

Solution: We have the following semistandard tableau satisfying the given conditions:

1	1		122	1	1	$1{ }^{1} 231$		1	1	2	1	1	1	3	1	1
112	3	3		2	2			2	3				2		2	2
															3	

Therefore, $M^{(2,2,1)}=S^{(5)} \oplus 2 \cdot S^{(4,1)} \oplus 2 \cdot S^{(3,2)} \oplus S^{(2,2,1)}$.

