LTCC: Representation Theory of Finite Groups Exercise Set 4

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

1. (From lecture) Suppose χ is a character of G and λ is a linear character of G.
(a) Show that the product $\lambda \chi$ (given by $\lambda \chi(g)=\lambda(g) \chi(g)$) is also a character of G.
Solution: Let $\rho: G \rightarrow \mathrm{GL}(V)$ be the representation associated to χ, and note that the representation associated with λ can be taken to be λ itself (see Week 3, Q6). Since $\lambda(g)$ is a scalar for all $g \in G$, we have that $\sigma: G \rightarrow \mathrm{GL}(V)$ given by $\sigma(g)=\lambda(g) \rho(g)$ is a homomorphism, since

$$
\sigma(g h)=\lambda(g h) \rho(g h)=\lambda(g) \lambda(h) \rho(g) \rho(h)=\lambda(g) \rho(g) \lambda(h) \rho(h)=\sigma(g) \sigma(h)
$$

Furthermore, the trace of the matrix $\sigma(g)$ is $\lambda(g) \chi(g)$ (again, since $\lambda(g)$ is a scalar). Thus, $\lambda \chi$ is the character of σ.
(b) Show that if χ is irreducible, then so is $\lambda \chi$.

Solution: We observe

$$
\langle\lambda \chi, \lambda \chi\rangle=\frac{1}{|G|} \sum_{g \in G}|\lambda(g)||\chi(g)| .
$$

However, since λ is a degree 1 character, we have that $\lambda(g)$ is a root of unity for each $g \in G$, and therefore $\mid \lambda(g)=1$ for all $g \in G$. Thus,

$$
\langle\lambda \chi, \lambda \chi\rangle=\frac{1}{|G|} \sum_{g \in G}|\lambda(g)||\chi(g)|=\frac{1}{|G|} \sum_{g \in G}|\chi(g)|=\langle\chi, \chi\rangle .
$$

Since a character is irreducible if and only if its inner product with itself is 1 , the result follows.
2. Let V and W be vector spaces. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for W, then the tensor product $V \otimes W$ is the vector space with basis $\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. [Note that for $v \in V$ and $w \in W$, we have $v \otimes w=$ $\left(\sum_{i} \lambda_{i} v_{i}\right) \otimes\left(\sum_{j} \lambda_{i} v_{i}\right)=\sum_{i, j} \lambda_{i} \mu_{j}\left(v_{i} \otimes w_{j}\right)$.] If V and W are in fact $\mathbb{C}[G]$-modules, we can define an action of G on $V \otimes W$ by $g \cdot(v \otimes w)=g v \otimes g w$ and extending linearly.
(a) Show that if the characters of V and W and χ and ψ, respectively, then the character of $V \otimes W$ is $\chi \psi$. [This shows that the product of any two characters of G is again a character of G. Note that this gives us an alternative proof of Exercise 1a, but Exercise 1a can also be solved more directly.]
Solution: Fix $g \in G$. We can find a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and $\left\{w_{1}, \ldots, w_{m}\right\}$ of W consisting of eigenvectors of g (by the proof of Section 3.1, Prop 3). Suppose $g v_{i}=\lambda_{i} v_{i}$ and $g w_{j}=\mu_{j} w_{j}$. Then $\chi(g)=\sum_{i} \lambda_{i}$ and $\psi(g)=\sum_{j} \mu_{j}$. Therefore, since $\left\{v_{i} \otimes w_{j}\right\}$ is a basis for $V \otimes W$, its character ϕ satisfies

$$
\phi(g)=\sum_{i j} \lambda_{i} \mu_{j}=\sum_{i} \lambda_{i} \sum_{j} \mu_{j}=\chi(g) \psi(g) .
$$

(b) Let V be a $\mathbb{C}[G]$-module with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and let $\varphi: V \otimes V \rightarrow$ $V \otimes V$ be the map given by $\varphi\left(v_{i} \otimes v_{j}\right)=v_{j} \otimes v_{i}$. Show that $\operatorname{Sym}(V)=$ $\{x \in V \otimes V \mid \varphi(x)=x\}$ and $\operatorname{Alt}(V)=\{x \in V \otimes V \mid \varphi(x)=-x\}$ are complementary submodules of $V \otimes V$.
Solution: For any $g \in G$, we have $g \varphi\left(v_{i} \otimes v_{j}\right)=g\left(v_{j} \otimes v_{i}\right)=g v_{j} \otimes g v_{i}=$ $\varphi\left(g v_{i} \otimes g v_{j}\right)=\varphi\left(g\left(v_{i} \otimes v_{j}\right)\right)$. Thus, φ commutes with the action of G, and hence is a $\mathbb{C}[G]$-homomorphism.
Therefore, if $x \in \operatorname{Sym}(V)$, we have $\varphi(g x)=g \varphi(x)=g x$, so $g x \in \operatorname{Sym}(V)$. Similarly, if $y \in \operatorname{Alt}(V)$, we have $\varphi(g y)=g \varphi(y)=-g y$, so $g y \in \operatorname{Alt}(V)$. Thus, $\operatorname{Sym}(V)$ and $\operatorname{Alt}(V)$ are submodules of $V \otimes V$.
To see that they are complementary subspaces, observe that if $x \in \operatorname{Sym}(V) \cap$ $\operatorname{Alt}(V)$, then $\varphi(x)=x=-x$, and hence $x=0$. We also observe that for every $v \in V$, we have

$$
v=\frac{1}{2}(v+\varphi(v))+\frac{1}{2}(v-\varphi(v))
$$

and $\frac{1}{2}(v+\varphi(v)) \in \operatorname{Sym}(V)$ and $\frac{1}{2}(v-\varphi(v)) \in \operatorname{Alt}(V)$ (since φ^{2} is the identity map). Therefore, $V \otimes V=\operatorname{Sym}(V)+\operatorname{Alt}(V)$.
(c) Find the characters χ_{S} and χ_{A} of $\operatorname{Sym}(V)$ and $\operatorname{Alt}(V)$ in terms of the character χ of V, and verify that $\chi^{2}=\chi_{S}+\chi_{A}$.
Solution: Given a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V, a basis for $\operatorname{Sym}(V)$ is given by $\left\{v_{i} \otimes v_{j}+v_{j} \otimes v_{i} \mid i \leq j\right\}$ and a basis for $\operatorname{Alt}(V)$ is given by $\left\{v_{i} \otimes v_{j}-v_{j} \otimes v_{i} \mid i<j\right\}$.
Now, given any $g \in G$, let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V consisting of eigenvectors of G. Then if $g v_{i}=\lambda_{i}$ (so $\chi(g)=\sum_{i} \lambda_{i}$), we have

$$
g\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}\right)=\lambda_{i} v_{i} \otimes \lambda_{j} v_{j}+\lambda_{j} v_{j} \otimes \lambda_{i} v_{i}=\lambda_{i} \lambda_{j}\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}\right)
$$

and

$$
g\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)=\lambda_{i} v_{i} \otimes \lambda_{j} v_{j}-\lambda_{j} v_{j} \otimes \lambda_{i} v_{i}=\lambda_{i} \lambda_{j}\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)
$$

Therefore,

$$
\chi_{S}(g)=\sum_{i \leq j} \lambda_{i} \lambda_{j}, \quad \chi_{A}(g)=\sum_{i<j} \lambda_{i} \lambda_{j} .
$$

Since $g^{2} v_{i}=\lambda_{i}^{2} v_{i}$, this implies

$$
\chi^{2}(g)=\left(\sum_{i} \lambda_{i}\right)^{2}=\sum_{i} \lambda_{i}^{2}+2 \sum_{i<j} \lambda_{i} \lambda_{j}=\chi\left(g^{2}\right)+2 \chi_{A}(g),
$$

and so $\chi_{A}(g)=\frac{1}{2}\left(\chi^{2}(g)-\chi\left(g^{2}\right)\right)$. Similarly, we can compute

$$
\chi^{2}(g)=\left(\sum_{i} \lambda_{i}\right)^{2}=2 \sum_{i \leq j} \lambda_{i} \lambda_{j}-\sum_{i} \lambda_{i}^{2}=2 \chi_{S}(g)-\chi\left(g^{2}\right),
$$

and so $\chi_{S}(g)=\frac{1}{2}\left(\chi^{2}(g)+\chi\left(g^{2}\right)\right)$.
Note that by the previous part, we already expect $\chi^{2}=\chi_{S}+\chi_{A}$. We can verify this directly now:

$$
\chi_{S}(g)+\chi_{A}(g)=\frac{1}{2}\left(\chi^{2}(g)+\chi\left(g^{2}\right)\right)+\frac{1}{2}\left(\chi^{2}(g)-\chi\left(g^{2}\right)\right)=\chi^{2}(g) .
$$

(d) Consider the character $\chi=\chi_{4}$ of S_{4} given in the character table we constructed in lecture. Find a decomposition of χ^{2} as a sum of irreducible characters. [This give us a way of decomposing the corresponding tensor product module as a direct sum of irreducible modules.]
Solution: We observe that $\chi^{2}(e)=\left|S_{4}\right|^{2}=24^{2}$ and $\chi^{2}(g)=0$ for all $g \neq e$ in S_{4}. We now take the inner product of χ^{2} with each of the characters in our table to find the multiplicity with which they appear in the decomposition of χ^{2}. Using the numbering from our character table for S_{4} from lecture, we have

$$
\begin{array}{r}
\left\langle\chi^{2}, \chi_{1}\right\rangle=\frac{1}{24}\left(24^{2}\right)=24 \\
\left\langle\chi^{2}, \chi_{2}\right\rangle=\frac{1}{24}\left(24^{2}\right)=24 \\
\left\langle\chi^{2}, \chi_{3}\right\rangle=\frac{1}{24}\left(24^{2}\right)(2)=48 \\
\left\langle\chi^{2}, \chi_{4}\right\rangle=\frac{1}{24}\left(24^{2}\right)(3)=72 \\
\left\langle\chi^{2}, \chi_{5}\right\rangle=\frac{1}{24}\left(24^{2}\right)(3)=72
\end{array}
$$

and so $\chi^{2}=24 \chi_{1}+24 \chi_{2}+48 \chi_{3}+72 \chi_{4}+72 \chi_{5}$.
3. (From lecture) Let N be a normal subgroup of G and let $\tilde{\chi}$ be a character of G / N. Let $\chi: G \rightarrow \mathbb{C}$ be given by $\chi(g)=\tilde{\chi}(g N)$. Show that χ is a character of G, and χ and $\tilde{\chi}$ have the same degree.
Solution: Let $\tilde{\rho}: G / N \rightarrow \mathrm{GL}(V)$ be the representation associated to $\tilde{\chi}$, and define $\rho: G \rightarrow G L(V)$ by $\rho(g)=\tilde{\rho}(g N)$. We verify that ρ is a homomorphism. We observe

$$
\rho(g) \rho(h)=\tilde{\rho}(g N) \tilde{\rho}(h N)=\tilde{\rho}(g h N)=\rho(g h) .
$$

Thus, ρ is a homomorphism, and therefore a representation.
Since $\rho(g)=\tilde{\rho}(g N)$, we also have that the trace $\chi(g)$ of $\rho(g)$ equals the trace of $\tilde{\chi}(g N)$ of $\tilde{\rho}(g N)$. Therefore, χ is a character of G satisfying $\chi(g)=\tilde{\chi}(g N)$.
Since the associated module for both χ and $\tilde{\chi}$ are the same, these characters have the same degree.
4. Let G^{\prime} denote the commutator subgroup of G, i.e. $G^{\prime}=\left\langle x y x^{-1} y^{-1} \mid x, y \in G\right\rangle$. A standard fact in group theory is that the quotient group G / N is abelian if and only if $G^{\prime} \subseteq N$. Show that the linear characters of G are precisely the lifts to G of the irreducible characters of G / G^{\prime}. [This implies that there are exactly $\left|G / G^{\prime}\right|$ linear characters of G.]
Solution: Since G / G^{\prime} is an abelian group, we know that all the characters of G / G^{\prime} are of degree 1, hence linear. Therefore, by the previous part, we know that the lifts of characters of G / G^{\prime} are also linear characters of G.
Conversely, suppose we have a linear character λ of G. Then $\lambda: G \rightarrow \mathrm{GL}(1, \mathbb{C}) \cong \mathbb{C}^{\times}$ is a homomorphism, and by the first isomorphism theorem for groups, we have $G / \operatorname{ker}(\lambda)=\operatorname{im}(\lambda)$. Since $\operatorname{im}(\lambda)$ is a subgroup of \mathbb{C}^{\times}, it must be abelian, and so $G / \operatorname{ker}(\lambda)$ is abelian, and hence G^{\prime} subseteq $\operatorname{ker}(\lambda)$. Therefore, we can define $\tilde{\lambda}$: $G / G^{\prime} \rightarrow \operatorname{GL}(1, \mathbb{C})$ by $\tilde{\lambda}\left(g G^{\prime}\right)=\lambda(g)$. To see that this is well-defined, observe that if $g G^{\prime}=h G^{\prime}$, then $g^{-1} \underset{\sim}{\sim} \in G^{\prime}$ and so $g^{-1} h \in \operatorname{ker}(\lambda)$ and so $\lambda\left(g^{-1} h\right)=1$, which means $\lambda(g)=\lambda(h)$. Thus, $\tilde{\lambda}\left(g G^{\prime}\right)=\lambda(g)=\lambda(h)=\tilde{\lambda}\left(h G^{\prime}\right)$, and hence $\tilde{\lambda}$ is a well-defined homomorphism of G / G^{\prime}, and therefore one of its linear characters.
5. Find the character tables for
(a) $D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, f r=r^{-1} f\right\rangle$

Solution:

$g_{i}:$	e	r	r^{2}	f	$r f$
$\left\|\mathrm{Cl}\left(g_{i}\right)\right\|$	1	2	1	2	2
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	-1	1	1	-1
χ_{4}	1	-1	1	-1	1
χ_{5}	2	0	-2	0	0

(b) $G=\left\langle a, b \mid a^{6}=b^{3}=1, b a=a b^{-1}\right\rangle$.

Solution:
The 9 conjugacy classes of G are, for $0 \leq r \leq 2$, of the form:

$$
\left\{a^{2 r}\right\},\left\{a^{2 r} b, a^{2 r} b^{2}\right\},\left\{a^{2 r+1}, a^{2 r+1} b, a^{2 r+1} b^{2}\right\} .
$$

We have $G^{\prime}=\langle b\rangle$ and $G / G^{\prime}=\left\langle a G^{\prime}\right\rangle \cong C_{6}$. Hence we get 6 linear characters χ_{j} for $0 \leq j \leq 5$, as shown. The remaining characters must have degree 2 , and their values can be computed using the orthogonality relations.
In the table below, we will compactify information by grouping together the conjugacy classes and characters as described above. Let $\omega=e^{2 \pi i / 6}$.

$g_{i}:$	$a^{2 r}$	$a^{2 r} b$	$a^{2 r+1}$
$\left\|Z\left(g_{i}\right)\right\|$	18	9	6
χ_{j}	$\omega^{2 j r}$	$\omega^{2 j r}$	$\omega^{j(2 r+1)}$
$(0 \leq j \leq 5)$			
ψ_{k}	$2 \omega^{2 k r}$	$-\omega^{2 k r}$	0
$(0 \leq k \leq 2)$			

6. There exists a group G of order 10 with precisely four conjugacy classes with representatives $g_{1}, g_{2}, g_{3}, g_{4}$, and has an irreducible character χ given by

$g_{i}:$	g_{1}	g_{2}	g_{3}	g_{4}
χ	2	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	0

(a) Find the sizes of the conjugacy classes of G. (Hint: It would be helpful to also have one other irreducible character for this.)
Solution: Let c_{i} be the size of the conjugacy class of g_{i}. Since only $\chi\left(g_{1}\right)$ is a positive integer, this must be the degree of the representation, and therefore $g_{1}=e$. The identity element is in its own conjugacy class, and therefore $c_{1}=1$. Let τ be the trivial character. Then we have $\langle\tau, \tau\rangle=1,\langle\chi, \chi\rangle=1,\langle\chi, \tau\rangle=0$, and therefore,

$$
\begin{aligned}
& 1=\frac{1}{10}\left(1+c_{2}+c_{3}+c_{4}\right) \\
& 1=\frac{1}{10}\left(4+c_{2} \frac{3-\sqrt{5}}{2}+c_{3} \frac{3+\sqrt{5}}{2}\right) \\
& 0=\frac{1}{10}\left(2+c_{2} \frac{-1+\sqrt{5}}{2}+c_{3} \frac{-1-\sqrt{5}}{2}+c_{4}\right) .
\end{aligned}
$$

Solving these equations, we get $c_{2}=c_{3}=2$ and $c_{4}=5$.
(b) Complete the character table of G.

Solution: We can complete the first column using the sum of squares formula for the degrees of irreducible characters. Then, we observe that since g_{4} is the only element with a conjugacy class of size 5 , and its centraliser has order 2 , it must be an element of order 2. Using orthogonality and Week 3 Q3a, we can complete the last column. The remaining entries can then be completed using orthogonality relations.

$g_{i}:$	g_{1}	g_{2}	g_{3}	g_{4}
$Z\left(g_{i}\right):$	10	5	5	2
τ	1	1	1	1
χ	2	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	0
χ_{3}	1	1	1	-1
χ_{4}	2	$\frac{-1-\sqrt{5}}{2}$	$\frac{-1+\sqrt{5}}{2}$	0

