
LTCC: Representation Theory of Finite Groups
Exercise Set 4

Throughout this exercise set, assume G is a finite group, and that we are working over
the field of complex numbers.

1. (From lecture) Suppose χ is a character of G and λ is a linear character of G.

(a) Show that the product λχ (given by λχ(g) = λ(g)χ(g)) is also a character of
G.

Solution: Let ρ : G→ GL(V ) be the representation associated to χ, and note
that the representation associated with λ can be taken to be λ itself (see Week
3, Q6). Since λ(g) is a scalar for all g ∈ G, we have that σ : G→ GL(V ) given
by σ(g) = λ(g)ρ(g) is a homomorphism, since

σ(gh) = λ(gh)ρ(gh) = λ(g)λ(h)ρ(g)ρ(h) = λ(g)ρ(g)λ(h)ρ(h) = σ(g)σ(h).

Furthermore, the trace of the matrix σ(g) is λ(g)χ(g) (again, since λ(g) is a
scalar). Thus, λχ is the character of σ.

(b) Show that if χ is irreducible, then so is λχ.

Solution: We observe

〈λχ, λχ〉 =
1

|G|
∑
g∈G

|λ(g)||χ(g)|.

However, since λ is a degree 1 character, we have that λ(g) is a root of unity
for each g ∈ G, and therefore |λ(g) = 1 for all g ∈ G. Thus,

〈λχ, λχ〉 =
1

|G|
∑
g∈G

|λ(g)||χ(g)| = 1

|G|
∑
g∈G

|χ(g)| = 〈χ, χ〉 .

Since a character is irreducible if and only if its inner product with itself is 1,
the result follows.

2. Let V and W be vector spaces. If {v1, . . . , vn} is a basis for V and {w1, . . . , wm}
is a basis for W , then the tensor product V ⊗ W is the vector space with basis
{vi ⊗ wj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. [Note that for v ∈ V and w ∈ W , we have v⊗w =
(
∑

i λivi)⊗ (
∑

j λivi) =
∑

i,j λiµj(vi ⊗ wj).] If V and W are in fact C[G]-modules,
we can define an action of G on V ⊗W by g · (v ⊗ w) = gv ⊗ gw and extending
linearly.
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(a) Show that if the characters of V and W and χ and ψ, respectively, then the
character of V ⊗W is χψ. [This shows that the product of any two characters
of G is again a character of G. Note that this gives us an alternative proof of
Exercise 1a, but Exercise 1a can also be solved more directly.]

Solution: Fix g ∈ G. We can find a basis {v1, . . . , vn} of V and {w1, . . . , wm} of
W consisting of eigenvectors of g (by the proof of Section 3.1, Prop 3). Suppose
gvi = λivi and gwj = µjwj. Then χ(g) =

∑
i λi and ψ(g) =

∑
j µj. Therefore,

since {vi ⊗ wj} is a basis for V ⊗W , its character φ satisfies

φ(g) =
∑
ij

λiµj =
∑
i

λi
∑
j

µj = χ(g)ψ(g).

(b) Let V be a C[G]-module with basis {v1, . . . , vn}, and let ϕ : V ⊗ V →
V ⊗ V be the map given by ϕ(vi ⊗ vj) = vj ⊗ vi. Show that Sym(V ) =
{x ∈ V ⊗ V | ϕ(x) = x} and Alt(V ) = {x ∈ V ⊗ V | ϕ(x) = −x} are comple-
mentary submodules of V ⊗ V .

Solution: For any g ∈ G, we have gϕ(vi ⊗ vj) = g(vj ⊗ vi) = gvj ⊗ gvi =
ϕ(gvi ⊗ gvj) = ϕ(g(vi ⊗ vj)). Thus, ϕ commutes with the action of G, and
hence is a C[G]-homomorphism.

Therefore, if x ∈ Sym(V ), we have ϕ(gx) = gϕ(x) = gx, so gx ∈ Sym(V ).
Similarly, if y ∈ Alt(V ), we have ϕ(gy) = gϕ(y) = −gy, so gy ∈ Alt(V ). Thus,
Sym(V ) and Alt(V ) are submodules of V ⊗ V.
To see that they are complementary subspaces, observe that if x ∈ Sym(V ) ∩
Alt(V ), then ϕ(x) = x = −x, and hence x = 0. We also observe that for every
v ∈ V , we have

v =
1

2
(v + ϕ(v)) +

1

2
(v − ϕ(v))

and 1
2
(v + ϕ(v)) ∈ Sym(V ) and 1

2
(v − ϕ(v)) ∈ Alt(V ) (since ϕ2 is the identity

map). Therefore, V ⊗ V = Sym(V ) + Alt(V ).

(c) Find the characters χS and χA of Sym(V ) and Alt(V ) in terms of the character
χ of V , and verify that χ2 = χS + χA.

Solution: Given a basis {v1, . . . , vn} of V , a basis for Sym(V ) is given by
{vi ⊗ vj + vj ⊗ vi | i ≤ j} and a basis for Alt(V ) is given by {vi ⊗ vj − vj ⊗ vi | i < j}.
Now, given any g ∈ G, let {v1, . . . , vn} be a basis of V consisting of eigenvectors
of G. Then if gvi = λi (so χ(g) =

∑
i λi), we have

g(vi ⊗ vj + vj ⊗ vi) = λivi ⊗ λjvj + λjvj ⊗ λivi = λiλj(vi ⊗ vj + vj ⊗ vi)

and

g(vi ⊗ vj − vj ⊗ vi) = λivi ⊗ λjvj − λjvj ⊗ λivi = λiλj(vi ⊗ vj − vj ⊗ vi).
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Therefore,

χS(g) =
∑
i≤j

λiλj, χA(g) =
∑
i<j

λiλj.

Since g2vi = λ2i vi, this implies

χ2(g) =

(∑
i

λi

)2

=
∑
i

λ2i + 2
∑
i<j

λiλj = χ(g2) + 2χA(g),

and so χA(g) = 1
2
(χ2(g)− χ(g2)). Similarly, we can compute

χ2(g) =

(∑
i

λi

)2

= 2
∑
i≤j

λiλj −
∑
i

λ2i = 2χS(g)− χ(g2),

and so χS(g) = 1
2
(χ2(g) + χ(g2)).

Note that by the previous part, we already expect χ2 = χS+χA. We can verify
this directly now:

χS(g) + χA(g) =
1

2
(χ2(g) + χ(g2)) +

1

2
(χ2(g)− χ(g2)) = χ2(g).

(d) Consider the character χ = χ4 of S4 given in the character table we constructed
in lecture. Find a decomposition of χ2 as a sum of irreducible characters. [This
give us a way of decomposing the corresponding tensor product module as a
direct sum of irreducible modules.]

Solution: We observe that χ2(e) = |S4|2 = 242 and χ2(g) = 0 for all g 6= e in
S4. We now take the inner product of χ2 with each of the characters in our
table to find the multiplicity with which they appear in the decomposition of
χ2. Using the numbering from our character table for S4 from lecture, we have〈

χ2, χ1

〉
=

1

24
(242) = 24〈

χ2, χ2

〉
=

1

24
(242) = 24〈

χ2, χ3

〉
=

1

24
(242)(2) = 48〈

χ2, χ4

〉
=

1

24
(242)(3) = 72〈

χ2, χ5

〉
=

1

24
(242)(3) = 72

and so χ2 = 24χ1 + 24χ2 + 48χ3 + 72χ4 + 72χ5.
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3. (From lecture) Let N be a normal subgroup of G and let χ̃ be a character of G/N .
Let χ : G → C be given by χ(g) = χ̃(gN). Show that χ is a character of G, and χ
and χ̃ have the same degree.

Solution: Let ρ̃ : G/N → GL(V ) be the representation associated to χ̃, and define
ρ : G→ GL(V ) by ρ(g) = ρ̃(gN). We verify that ρ is a homomorphism. We observe

ρ(g)ρ(h) = ρ̃(gN)ρ̃(hN) = ρ̃(ghN) = ρ(gh).

Thus, ρ is a homomorphism, and therefore a representation.

Since ρ(g) = ρ̃(gN), we also have that the trace χ(g) of ρ(g) equals the trace of
χ̃(gN) of ρ̃(gN). Therefore, χ is a character of G satisfying χ(g) = χ̃(gN).

Since the associated module for both χ and χ̃ are the same, these characters have
the same degree.

4. Let G′ denote the commutator subgroup of G, i.e. G′ = 〈xyx−1y−1 | x, y ∈ G〉. A
standard fact in group theory is that the quotient group G/N is abelian if and only
if G′ ⊆ N . Show that the linear characters of G are precisely the lifts to G of the
irreducible characters of G/G′. [This implies that there are exactly |G/G′| linear
characters of G.]

Solution: Since G/G′ is an abelian group, we know that all the characters of G/G′

are of degree 1, hence linear. Therefore, by the previous part, we know that the lifts
of characters of G/G′ are also linear characters of G.

Conversely, suppose we have a linear character λ ofG. Then λ : G→ GL(1,C) ∼= C×
is a homomorphism, and by the first isomorphism theorem for groups, we have
G/ ker(λ) = im(λ). Since im(λ) is a subgroup of C×, it must be abelian, and so
G/ ker(λ) is abelian, and hence G′subseteq ker(λ). Therefore, we can define λ̃ :
G/G′ → GL(1,C) by λ̃(gG′) = λ(g). To see that this is well-defined, observe that if
gG′ = hG′, then g−1h ∈ G′ and so g−1h ∈ ker(λ) and so λ(g−1h) = 1, which means
λ(g) = λ(h). Thus, λ̃(gG′) = λ(g) = λ(h) = λ̃(hG′), and hence λ̃ is a well-defined
homomorphism of G/G′, and therefore one of its linear characters.

5. Find the character tables for

(a) D4 = 〈r, f | r4 = f 2 = e, fr = r−1f〉
Solution:
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gi : e r r2 f rf
|Cl(gi)| 1 2 1 2 2

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 −1 1 1 −1

χ4 1 −1 1 −1 1

χ5 2 0 −2 0 0

(b) G = 〈a, b | a6 = b3 = 1, ba = ab−1〉 .
Solution:

The 9 conjugacy classes of G are, for 0 ≤ r ≤ 2, of the form:{
a2r
}
,
{
a2rb, a2rb2

}
,
{
a2r+1, a2r+1b, a2r+1b2

}
.

We have G′ = 〈b〉 and G/G′ = 〈aG′〉 ∼= C6. Hence we get 6 linear characters
χj for 0 ≤ j ≤ 5, as shown. The remaining characters must have degree 2, and
their values can be computed using the orthogonality relations.

In the table below, we will compactify information by grouping together the
conjugacy classes and characters as described above. Let ω = e2πi/6.

gi : a2r a2rb a2r+1

|Z(gi)| 18 9 6

χj ω2jr ω2jr ωj(2r+1)

(0 ≤ j ≤ 5)

ψk 2ω2kr −ω2kr 0
(0 ≤ k ≤ 2)

6. There exists a group G of order 10 with precisely four conjugacy classes with rep-
resentatives g1, g2, g3, g4, and has an irreducible character χ given by

gi : g1 g2 g3 g4

χ 2 −1+
√
5

2
−1−

√
5

2
0
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(a) Find the sizes of the conjugacy classes of G. (Hint: It would be helpful to also
have one other irreducible character for this.)

Solution: Let ci be the size of the conjugacy class of gi. Since only χ(g1) is a
positive integer, this must be the degree of the representation, and therefore
g1 = e. The identity element is in its own conjugacy class, and therefore c1 = 1.

Let τ be the trivial character. Then we have 〈τ, τ〉 = 1, 〈χ, χ〉 = 1, 〈χ, τ〉 = 0,
and therefore,

1 =
1

10
(1 + c2 + c3 + c4)

1 =
1

10

(
4 + c2

3−
√

5

2
+ c3

3 +
√

5

2

)

0 =
1

10

(
2 + c2

−1 +
√

5

2
+ c3
−1−

√
5

2
+ c4

)
.

Solving these equations, we get c2 = c3 = 2 and c4 = 5.

(b) Complete the character table of G.

Solution: We can complete the first column using the sum of squares formula
for the degrees of irreducible characters. Then, we observe that since g4 is the
only element with a conjugacy class of size 5, and its centraliser has order 2, it
must be an element of order 2. Using orthogonality and Week 3 Q3a, we can
complete the last column. The remaining entries can then be completed using
orthogonality relations.

gi : g1 g2 g3 g4
Z(gi) : 10 5 5 2

τ 1 1 1 1

χ 2 −1+
√
5

2
−1−

√
5

2
0

χ3 1 1 1 -1

χ4 2 −1−
√
5

2
−1+

√
5

2
0
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