LTCC: Representation Theory of Finite Groups Exercise Set 4

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

1. (From lecture) Suppose χ is a character of G and λ is a linear character of G.
(a) Show that the product $\lambda \chi$ (given by $\lambda \chi(g)=\lambda(g) \chi(g)$) is also a character of G.
(b) Show that if χ is irreducible, then so is $\lambda \chi$.
2. Let V and W be vector spaces. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for W, then the tensor product $V \otimes W$ is the vector space with basis $\left\{v_{i} \otimes w_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. [Note that for $v \in V$ and $w \in W$, we have $v \otimes w=$ $\left(\sum_{i} \lambda_{i} v_{i}\right) \otimes\left(\sum_{j} \lambda_{i} v_{i}\right)=\sum_{i, j} \lambda_{i} \mu_{j}\left(v_{i} \otimes w_{j}\right)$.] If V and W are in fact $\mathbb{C}[G]$-modules, we can define an action of G on $V \otimes W$ by $g \cdot(v \otimes w)=g v \otimes g w$ and extending linearly.
(a) Show that if the characters of V and W and χ and ψ, respectively, then the character of $V \otimes W$ is $\chi \psi$. [This shows that the product of any two characters of G is again a character of G. Note that this gives us an alternative proof of Exercise 1a, but Exercise 1a can also be solved more directly.]
(b) Let V be a $\mathbb{C}[G]$-module with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and let $\varphi: V \otimes V \rightarrow$ $V \otimes V$ be the map given by $\varphi\left(v_{i} \otimes v_{j}\right)=v_{j} \otimes v_{i}$. Show that $\operatorname{Sym}(V)=$ $\{x \in V \otimes V \mid \varphi(x)=x\}$ and $\operatorname{Alt}(V)=\{x \in V \otimes V \mid \varphi(x)=-x\}$ are complementary submodules of $V \otimes V$.
(c) Find the characters χ_{S} and χ_{A} of $\operatorname{Sym}(V)$ and $\operatorname{Alt}(V)$ in terms of the character χ of V, and verify that $\chi^{2}=\chi_{S}+\chi_{A}$.
(d) Consider the character $\chi=\chi_{4}$ of S_{4} given in the character table we constructed in lecture. Find a decomposition of χ^{2} as a sum of irreducible characters. [This give us a way of decomposing the corresponding tensor product module as a direct sum of irreducible modules.]
3. (From lecture) Let N be a normal subgroup of G and let $\tilde{\chi}$ be a character of G / N. Let $\chi: G \rightarrow \mathbb{C}$ be given by $\chi(g)=\tilde{\chi}(g N)$. Then χ is a character of G, and χ and $\tilde{\chi}$ have the same degree.
4. Let G^{\prime} denote the commutator subgroup of G, i.e. $G^{\prime}=\left\langle x y x^{-1} y^{-1} \mid x, y \in G\right\rangle$. A standard fact in group theory is that the quotient group G / N is abelian if and only if $G^{\prime} \subseteq N$. Show that the linear characters of G are precisely the lifts to G of the irreducible characters of G / G^{\prime}. [This implies that there are exactly $\left|G / G^{\prime}\right|$ linear characters of G.]
5. Find the character tables for
(a) $D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, f r=r^{-1} f\right\rangle$
(b) $G=\left\langle a, b \mid a^{6}=b^{3}=1, b a=a b^{-1}\right\rangle$.
6. There exists a group G of order 10 with precisely four conjugacy classes with representatives $g_{1}, g_{2}, g_{3}, g_{4}$, and has an irreducible character χ given by

$g_{i}:$	g_{1}	g_{2}	g_{3}	g_{4}
χ	2	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	0

(a) Find the sizes of the conjugacy classes of G. (Hint: It would be helpful to also have one other irreducible character for this.)
(b) Complete the character table of G.

