LTCC: Representation Theory of Finite Groups Exercise Set 3

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

1. (From lecture) Given a group G, show that character of the regular representation G is given by $\chi(e) = |G|$ and $\chi(g) = 0$ for all $g \neq e$ in G.

Solution: Let ρ be the regular representation, and observe that for all $g \in G$, $\rho(g)$ permutes the elements of G, and hence is represented by a permutation matrix (with a single 1 in each row and column and 0s elsewhere). Therefore, the trace of $\rho(g)$ is given by the number of elements which are fixed under left multiplication by g. We observe that if gh = h for some $h \in G$, then g = e. Therefore, since e fixes every element in G, we have $\chi(e) = |G|$ and since $g \neq e$ cannot fix any element in G, we have $\chi(g) = 0$.

- 2. Let S_n act on an *n*-dimensional space V with basis $\{v_1, \ldots, v_n\}$ by $\sigma v_i = v_{\sigma(i)}$. (V is called the *permutation module* of S_n .)
 - (a) Let χ be the character of the permutation representation of S₇. Find χ(x) for x = (1 2) and x = (1 6)(2 3 5).
 Solution: χ((1 2)) = 5 χ((1 6)(2 3 5)) = 2
 - (b) Show that in general the character χ of a permutation representation is given by $\chi(\sigma) = |\operatorname{fix}(\sigma)|$ where $\operatorname{fix}(g) = \{i \mid \sigma(i) = i\}$. Solution: Let ρ be the permutation representation. As in Q 1, for each $\sigma \in S_n$, the matrix $\rho(\sigma)$ will be a permutation matrix, and so $\chi(\sigma)$ equals the number of basis vectors fixed by the action of σ . This is precisely equal to $|\operatorname{fix}(\sigma)|$.
- 3. Let $\rho: G \to GL(V)$ be a representation, and let χ be the character of ρ . Prove the following statements:
 - (a) If g ∈ G is an element of order 2, then χ(g) is an integer such that χ(g) ≡ χ(e) mod 2.
 Solution: Since g² = e, we know that ρ(g)² = I_V. Therefore, the eigenvalues of g are all 1 or -1, and hence χ(g) = tr(ρ(g)) = k ℓ where k is the multiplicity of 1, ℓ is the multiplicity of -1 and k + ℓ = dim(V) =: n. Then, mod 2, we have χ(g) = k ℓ = k + ℓ = n = χ(e).

(b) |χ(g)| = χ(e) if and only if ρ(g) = λI_n for some λ ∈ C. (Note that the absolute value of a complex number is given by |x + iy| = √x² + y².)
Solution: If ρ(g) = λI_n for some λ ∈ C, then χ(g) = tr(ρ(g)) = nλ, and hence |χ(g)| = n|λ|. But note that λ must be a root of unity since ρ(g) has finite order, and so |λ| = 1, and hence |χ(g)| = n = χ(e).
Now suppose |χ(g)| = n = χ(e). Then χ(g), which is the sum of mth roots of discussion.

Now suppose $|\chi(g)| = n - \chi(e)$. Then $\chi(g)$, which is the sum of m^{-1} roots of unity, must in fact be the sum of n copies of the same root of unity ω . We know there is a basis in which $\rho(g)$ is diagonal (for example, by the proof of Section 3.1, Prop 3), and so in this basis $\rho(g) = (diag)(\omega, \omega, \dots, \omega) = \omega I_n$. But any change of basis (conjugation) would leave this matrix unchanged, and hence $\rho = \omega I_n$ in any basis.

- (c) $\ker(\rho) = \{g \in G | \chi(g) = \chi(e)\}$ Solution: Suppose $g \in \ker(\rho)$. Then $\rho(g) = I_n = \rho(e)$, and hence $\chi(g) = \chi(e)$. Now suppose $\chi(g) = \chi(e)$ for some $g \in G$. Then by the previous part, we know that $\rho(g) = \lambda I_n$ for some $\lambda \in \mathbb{C}$. Therefore $\chi(g) = n\lambda$, but this can only equal $\chi(e) = n$ if $\lambda = 1$. Thus, $\rho(g) = I_n$ and hence $g \in \ker(\rho)$.
- 4. Prove that if χ is a faithful irreducible character if G, then the center of G is given by $Z(G) = \{g \in G \mid |\chi(g)| = \chi(e)\}.$

Solution: Let ρ be the corresponding representation.

Suppose g satisfies $|\chi(g)| = \chi(e)$. If $g \in Z(G)$, then since ρ is irreducible, by Week 1 Q4a we have $\rho(g) = \lambda I$ for some $\lambda \in \mathbb{C}$. Conversely, if $g = \lambda I_n$ for some $\lambda \in \mathbb{C}$, then $\rho(g)$ commutes with $\rho(h)$ for all $h \in G$, and hence $g \in Z(G)$ since ρ is faithful. Finally, by Q2b, we know that $\rho(g) = \lambda I_n$ for some $\lambda \in \mathbb{C}$ iff $|\chi(g)| = \chi(e)$, and so the result follows.

5. Let χ be an irreducible character of G, and suppose $z \in Z(G)$ is an element of order m. Show that there exists an m^{th} root of unity $\lambda \in \mathbb{C}$ such that for all $g \in G$, $\chi(zg) = \lambda \chi(g)$.

Solution: Let ρ be the corresponding representation. By Q2b, we know that $\rho(z) = \lambda I_n$ for some $\lambda \in \mathbb{C}$, and since $\rho(z^m) = \rho(z)^m = I_n$, we know λ must be an m^{th} root of unity. Therefore $\rho(zg) = \rho(z)\rho(g) = \lambda\rho(g)$ for all $g \in G$, and hence $\chi(zg) = \lambda\chi(g)$.

6. Let χ be a character of G. Show that χ is a homorphism from G to \mathbb{C}^{\times} if and only if χ is the character of a degree one representation. (Such characters are called *linear characters*.)

Solution: If χ has degree n > 1, then $\chi(e) = n$, so χ does not take identity in G to identity in \mathbb{C}^{\times} , and hence cannot be a homomorphism.

Now suppose χ has degree 1, so that $\chi(e) = 1$. Then if ρ is the corresponding representation, we have $\chi(g) = \rho(g)$, and a representation of G is a group homomorphism by definition. Thus, χ is in fact a homomorphism in this case.

7. Suppose χ is a nonzero, nontrivial character of G, and that $\chi(g)$ is a nonnegative real number for all $g \in G$. Show that χ must be reducible.

Solution: Let τ be the trivial character of G. Then we have

$$\langle \chi, \tau \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g).$$

Since $\chi(g)$ is a nonnegative real number for all $g \in G$ and χ is nonzero, we get that $\langle \chi, \tau \rangle > 0$, so τ is a constituent of χ . Since χ is given to be nontrivial itself, it must therefore be reducible.