LTCC: Representation Theory of Finite Groups Exercise Set 3

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

1. (From lecture) Given a group G, show that character of the regular representation G is given by $\chi(e)=|G|$ and $\chi(g)=0$ for all $g \neq e$ in G.
Solution: Let ρ be the regular representation, and observe that for all $g \in G, \rho(g)$ permutes the elements of G, and hence is represented by a permutation matrix (with a single 1 in each row and column and 0s elsewhere). Therefore, the trace of $\rho(g)$ is given by the number of elements which are fixed under left multiplication by g. We observe that if $g h=h$ for some $h \in G$, then $g=e$. Therefore, since e fixes every element in G, we have $\chi(e)=|G|$ and since $g \neq e$ cannot fix any element in G, we have $\chi(g)=0$.
2. Let S_{n} act on an n-dimensional space V with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ by $\sigma v_{i}=v_{\sigma(i)}$. (V is called the permutation module of S_{n}.)
(a) Let χ be the character of the permutation representation of S_{7}. Find $\chi(x)$ for $x=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $x=\left(\begin{array}{ll}1 & 6\end{array}\right)\left(\begin{array}{ll}2 & 5\end{array}\right)$.
Solution: $\chi((12))=5$ $\chi((16)(235))=2$
(b) Show that in general the character χ of a permutation representation is given by $\chi(\sigma)=|\operatorname{fix}(\sigma)|$ where fix $(g)=\{i \mid \sigma(i)=i\}$.
Solution: Let ρ be the permutation representation. As in Q 1 , for each $\sigma \in S_{n}$, the matrix $\rho(\sigma)$ will be a permuation matrix, and so $\chi(\sigma)$ equals the number of basis vectors fixed by the action of σ. This is precisely equal to \mid fix $(\sigma) \mid$.
3. Let $\rho: G \rightarrow G L(V)$ be a representation, and let χ be the character of ρ. Prove the following statements:
(a) If $g \in G$ is an element of order 2 , then $\chi(g)$ is an integer such that $\chi(g) \equiv \chi(e)$ $\bmod 2$.
Solution: Since $g^{2}=e$, we know that $\rho(g)^{2}=I_{V}$. Therefore, the eigenvalues of g are all 1 or -1 , and hence $\chi(g)=\operatorname{tr}(\rho(g))=k-\ell$ where k is the multiplicity of $1, \ell$ is the multiplicity of -1 and $k+\ell=\operatorname{dim}(V)=: n$. Then, $\bmod 2$, we have $\chi(g)=k-\ell=k+\ell=n=\chi(e)$.
(b) $|\chi(g)|=\chi(e)$ if and only if $\rho(g)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$. (Note that the absolute value of a complex number is given by $|x+i y|=\sqrt{x^{2}+y^{2}}$.)
Solution: If $\rho(g)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$, then $\chi(g)=\operatorname{tr}(\rho(g))=n \lambda$, and hence $|\chi(g)|=n|\lambda|$. But note that λ must be a root of unity since $\rho(g)$ has finite order, and so $|\lambda|=1$, and hence $|\chi(g)|=n=\chi(e)$.
Now suppose $|\chi(g)|=n=\chi(e)$. Then $\chi(g)$, which is the sum of $m^{\text {th }}$ roots of unity, must in fact be the sum of n copies of the same root of unity ω. We know there is a basis in which $\rho(g)$ is diagonal (for example, by the proof of Section 3.1, Prop 3), and so in this basis $\rho(g)=(\operatorname{diag})(\omega, \omega, \ldots, \omega)=\omega I_{n}$. But any change of basis (conjugation) would leave this matrix unchanged, and hence $\rho=\omega I_{n}$ in any basis.
(c) $\operatorname{ker}(\rho)=\{g \in G \mid \chi(g)=\chi(e)\}$

Solution: Suppose $g \in \operatorname{ker}(\rho)$. Then $\rho(g)=I_{n}=\rho(e)$, and hence $\chi(g)=\chi(e)$. Now suppose $\chi(g)=\chi(e)$ for some $g \in G$. Then by the previous part, we know that $\rho(g)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$. Therefore $\chi(g)=n \lambda$, but this can only equal $\chi(e)=n$ if $\lambda=1$. Thus, $\rho(g)=I_{n}$ and hence $g \in \operatorname{ker}(\rho)$.
4. Prove that if χ is a faithful irreducible character if G, then the center of G is given by $Z(G)=\{g \in G| | \chi(g) \mid=\chi(e)\}$.
Solution: Let ρ be the corresponding representation.
Suppose g satisfies $|\chi(g)|=\chi(e)$. If $g \in Z(G)$, then since ρ is irreducible, by Week 1 Q4a we have $\rho(g)=\lambda I$ for some $\lambda \in \mathbb{C}$. Conversely, if $g=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$, then $\rho(g)$ commutes with $\rho(h)$ for all $h \in G$, and hence $g \in Z(G)$ since ρ is faithful.
Finally, by Q2b, we know that $\rho(g)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$ iff $|\chi(g)|=\chi(e)$, and so the result follows.
5. Let χ be an irreducible character of G, and suppose $z \in Z(G)$ is an element of order m. Show that there exists an $m^{\text {th }}$ root of unity $\lambda \in \mathbb{C}$ such that for all $g \in G$, $\chi(z g)=\lambda \chi(g)$.
Solution: Let ρ be the corresponding representation. By Q2b, we know that $\rho(z)=$ λI_{n} for some $\lambda \in \mathbb{C}$, and since $\rho\left(z^{m}\right)=\rho(z)^{m}=I_{n}$, we know λ must be an $m^{\text {th }}$ root of unity. Therefore $\rho(z g)=\rho(z) \rho(g)=\lambda \rho(g)$ for all $g \in G$, and hence $\chi(z g)=\lambda \chi(g)$.
6. Let χ be a character of G. Show that χ is a homorphism from G to \mathbb{C}^{\times}if and only if χ is the character of a degree one representation. (Such characters are called linear characters.)

Solution: If χ has degree $n>1$, then $\chi(e)=n$, so χ does not take identity in G to identity in \mathbb{C}^{\times}, and hence cannot be a homomorphism.

Now suppose χ has degree 1 , so that $\chi(e)=1$. Then if ρ is the corresponding representation, we have $\chi(g)=\rho(g)$, and a representation of G is a group homomorphism by definition. Thus, χ is in fact a homomorphism in this case.
7. Suppose χ is a nonzero, nontrivial character of G, and that $\chi(g)$ is a nonnegative real number for all $g \in G$. Show that χ must be reducible.
Solution: Let τ be the trivial character of G. Then we have

$$
\langle\chi, \tau\rangle=\frac{1}{|G|} \sum_{g \in G} \chi(g)
$$

Since $\chi(g)$ is a nonnegative real number for all $g \in G$ and χ is nonzero, we get that $\langle\chi, \tau\rangle>0$, so τ is a constituent of χ. Since χ is given to be nontrivial itself, it must therefore be reducible.

