LTCC: Representation Theory of Finite Groups Exercise Set 3

Throughout this exercise set, assume G is a finite group, and that we are working over the field of complex numbers.

- 1. (From lecture) Given a group G, show that character of the regular representation G is given by $\chi(e) = |G|$ and $\chi(g) = 0$ for all $g \neq e$ in G.
- 2. Let S_n act on an *n*-dimensional space V with basis $\{v_1, \ldots, v_n\}$ by $\sigma v_i = v_{\sigma(i)}$. (V is called the *permutation module* of S_n .)
 - (a) Let χ be the character of the permutation representation of S_7 . Find $\chi(x)$ for $x = (1 \ 2)$ and $x = (1 \ 6)(2 \ 3 \ 5)$.
 - (b) Show that in general the character χ of a permutation representation is given by $\chi(\sigma) = |\operatorname{fix}(\sigma)|$ where $\operatorname{fix}(g) = \{i \mid \sigma(i) = i\}$.
- 3. Let $\rho: G \to GL(V)$ be a representation, and let χ be the character of ρ . Prove the following statements:
 - (a) If $g \in G$ is an element of order 2, then $\chi(g)$ is an integer such that $\chi(g) \equiv \chi(e) \mod 2$.
 - (b) $|\chi(g)| = \chi(e)$ if and only if $\rho(g) = \lambda I_n$ for some $\lambda \in \mathbb{C}$. (Note that the absolute value of a complex number is given by $|x + iy| = \sqrt{x^2 + y^2}$.)
 - (c) $\ker(\rho) = \{g \in G | \chi(g) = \chi(e)\}$
- 4. Prove that if χ is a faithful irreducible character if G, then the center of G is given by $Z(G) = \{g \in G \mid |\chi(g)| = \chi(e)\}.$
- 5. Let χ be an irreducible character of G, and suppose $z \in Z(G)$ is an element of order m. Show that there exists an m^{th} root of unity $\lambda \in \mathbb{C}$ such that for all $g \in G$, $\chi(zg) = \lambda \chi(g)$.
- 6. Let χ be a character of G. Show that χ is a homorphism from G to \mathbb{C}^{\times} if and only if χ is the character of a degree one representation. (Such characters are called *linear characters*.)
- 7. Suppose χ is a nonzero, nontrivial character of G, and that $\chi(g)$ is a nonnegative real number for all $g \in G$. Show that χ must be reducible.