LTCC: Representation Theory of Finite Groups Exercise Set 2

1. (From lecture:) Let A be the group algebra over \mathbb{C} of $G=C_{3}=\left\langle x \mid x^{3}=e\right\rangle$ and let $V=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be an A-module with representation $\rho\left(v_{i}\right)=v_{i+1} \bmod 3$. This module has a submodule $U=\left\langle v_{1}+v_{2}+v_{3}\right\rangle$. Find a submodule W such that $V=U \oplus W$.
Solution: Let $W_{0}=\left\langle v_{1}, v_{2}\right\rangle$, so that $V=U \oplus W_{0}$ as vector spaces (note that W_{0} is not a submodule). Let $\varphi: V \rightarrow U$ be the projection map from $V=U \oplus W_{0}$ to U. We can verify that for all basis vectors v_{i}, we have

$$
\psi\left(v_{i}\right)=\frac{1}{|G|} \sum_{g \in G} g \varphi g^{-1}\left(v_{i}\right)=\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right) .
$$

Thus, $W=\operatorname{ker}(\psi)=\left\{\sum \lambda_{i} v_{i} \mid \sum \lambda_{i}=0\right\}$.
2. Is the submodule W from the previous exercise irreducible?

Solution: The submodule $W=\left\{\sum \lambda_{i} v_{i} \mid \sum \lambda_{i}=0\right\}$ is two dimensional, with a possible basis given by $v_{1}-v_{2}, v_{2}-v_{3}$. We have seen (as a corollary to Schur's Lemma) that all the irreducible submodules of an abelian group must be 1-dimensional, so this implies that W is not irreducible.
3. Let V, W_{1}, W_{2} be A-modules. Show that

$$
\operatorname{Hom}_{A}\left(V, W_{1} \oplus W_{2}\right) \cong \operatorname{Hom}_{A}\left(V, W_{1}\right) \oplus \operatorname{Hom}_{A}\left(V, W_{2}\right)
$$

as vector spaces (and thus their dimensions are the same).
Solution: Let $W=W_{1} \oplus W_{2}$ and let π_{1}, π_{2} be the projection maps from W to W_{1}, W_{2}, respectively, and note that the π are A-homomorphisms. Define a map $\varphi: \operatorname{Hom}_{A}\left(V, W_{1} \oplus W_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(V, W_{1}\right) \oplus \operatorname{Hom}_{A}\left(V, W_{2}\right)$ by $\varphi(f)=\left(\pi_{1} \circ f, \pi_{2} \circ f\right)$. We verify that φ is linear and bijective, and therefore an isomorphism of vector spaces.
4. Let G be a group. Suppose that ρ is a representation of G on a vector space V of dimension 1. Prove that $G / \operatorname{ker}(\rho)$ is abelian.

Solution: We note that $G / \operatorname{ker}(\rho) \cong \operatorname{im}(\rho)$ (as groups), and since $\operatorname{im}(\rho) \subset G L(V) \cong$ \mathbb{F}^{\times}(since V is 1-dimensional), we see that $\operatorname{im}(\rho)$ is a subgroup of an abelian group, and hence also abelian.
5. Let $\phi: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Prove that the map

$$
\rho: g \mapsto \operatorname{det}(\phi(g))
$$

is also a representation of G.
Solution: We observe that

$$
\rho(g h)=\operatorname{det}(\phi(g h))=\operatorname{det}(\phi(g) \phi(h))=\operatorname{det}(\phi(g)) \operatorname{det}(\phi(h))=\rho(g) \rho(h),
$$

and

$$
\rho(e)=\operatorname{det}(\phi(e))=\operatorname{det}\left(I_{n}\right)=1 .
$$

Therefore, ρ is also a representation.
6. Let $\rho: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Show that $\sigma: G / \operatorname{ker}(\rho) \rightarrow G L(n, \mathbb{F})$ given by $\sigma(g \operatorname{ker}(\rho))=\rho(g)$ is a faithful representation of $G / \operatorname{ker}(\rho)$. (Recall from Exercise Sheet 1 that a faithful representation is injective. Note that here you must show that it is a well-defined representation, as well as showing that it is faithful.)
Solution: Suppose $g \operatorname{ker}(\rho)=h \operatorname{ker}(\rho)$. This equivalent to the condition that $g^{-1} h \in$ $\operatorname{ker}(\rho)$ and hence $\rho\left(g^{-1} h\right)=I_{n}$. Since ρ is a representation, we have $\rho(g)^{-1} \rho(h)=I_{n}$, and hence $\rho(g)=\rho(h)$. Thus, $\sigma(g \operatorname{ker}(\rho))=\sigma(h \operatorname{ker}(\rho))$, so σ is well-defined.
We also observe that

$$
\sigma(g \operatorname{ker}(\rho) h \operatorname{ker}(\rho))=\sigma(g h \operatorname{ker}(\rho))=\rho(g h)=\rho(g) \rho(h)=\sigma(g \operatorname{ker}(\rho)) \sigma(h \operatorname{ker}(\rho)),
$$

and

$$
\sigma(e \operatorname{ker}(\rho))=\rho(e)=I_{n} .
$$

Therefore, σ is also a representation.
Finally, we suppose $\sigma(g \operatorname{ker}(\rho))=\sigma(h \operatorname{ker}(\rho))$. Then $\rho(g)=\rho(h)$, and so $\rho(g)^{-1} \rho(h)=$ I_{n}, and therefore $\rho\left(g^{-1} h\right)=I_{n}$. Thus, $g^{-1} h \in \operatorname{ker}(\rho)$, and so $g \operatorname{ker}(\rho)=h \operatorname{ker}(\rho)$. Therefore, σ is a faithful representation.
7. A simple group is a group that has no nontrivial, proper normal subgroups. Prove that for every finite simple group G, there exists a faithful irreducible $\mathbb{C}[G]$-module.
Solution: By Maschke's Theorem, the regular $\mathbb{C}[G]$-module decomposes into irreducible submodules. Let ρ be the representation of G on one of the nontrivial submodules. (Note that nontrivial submodules must exist whenever G is a nontrivial group. When G is trivial, the trivial module is faithful.) We then have that action of G on this nontrivial irreducible module is faithful, because $\operatorname{ker}(\rho)$ is normal in G, and therefore must be trivial.
8. When constucting the regular representation of G over \mathbb{F}, we used the action of G on itself by left multiplication, ie $g \cdot x=g x$ for $g, x \in G$. In this problem, we will use other actions of G on itself to construct new representations with associated module $\mathbb{F}[G]$.
(a) Define the right multiplication action $\cdot: G \times G \rightarrow G$ by $g \cdot x=x g^{-1}$. Show that right multiplication is in fact an action of G on itself. Explain why the operation $g \cdot x=x g$ is not an action.
Solution: We observe:

$$
g h \cdot x=x(g h)^{-1}=x h^{-1} g^{-1}=g \cdot(h \cdot x)
$$

and $e \cdot x=x e^{-1}=x$. Thus, this map is an action of G on $\mathbb{F}[G]$. This fails for the operation $g \cdot x=x g$, since in this case:

$$
g h \cdot x=x(g h)=h \cdot(g \cdot x) .
$$

(b) Show that the representation given by right multiplication is equivalent to the representation given by left multiplication.
Solution: Let $T: \mathbb{F}[G] \rightarrow \mathbb{F}[G]$ be the map given by $x \mapsto x^{-1}$ for all $x \in G$. (This is a permutation of basis vectors of $\mathbb{F}[G]$ and hence an invertible linear map.) We observe that for all $g \in G, g \cdot T(x)=g \cdot x^{-1}=x^{-1} g^{-1}=(g x)^{-1}=$ $T(g x)$. Thus, T is an equivalence of representations.
(c) Define the conjugation action $\cdot: G \times G \rightarrow G$ by $g \cdot x=g x g^{-1}$. Show that conjugation is in fact an action of G on itself.
Solution: We observe:

$$
g h \cdot x=(g h) x(g h)^{-1}=g h x h^{-1} g^{-1}=g \cdot(h \cdot x)
$$

and $e \cdot x=e x e^{-1}=x$. Thus, this map is an action of G on $\mathbb{F}[G]$.
(d) Show that in general, conjugation is not equivalent to left multiplication. (Hint: Consider $G=C_{3}$.)
Solution: Let $G=C_{3}$. We observe that every element of G is fixed by the conjugation action of G, and hence so is every element of $\mathbb{F}[G]$, so $\mathbb{F}[G]$ decomposes into the direct sum of three copies of the trivial module. On the other hand, the G acts nontrivially on the regular $\mathbb{F}[G]$-module.
Alternative solution: Let $|G|>1$. Suppose there exists a bijective linear map $T: \mathbb{F}[G] \rightarrow \mathbb{F}[G]$ such that $T(g x)=g T(x) g^{-1}$ for all $g \in G, x \in \mathbb{F}[G]$. By setting $x=e$, we get $T(g)=g T(e) g^{-1}=e$ for all $g \in G$, which contradicts the fact that G is bijective.
9. Suppose G is a finite group such that every irreducible $\mathbb{C}[G]$-module has dimension 1. Show that G is abelian.

Solution: By Maschke's Theorem, the regular $\mathbb{C}[G]$-module decomposes into irreducible submodules. Thus, we get that $\mathbb{C}[G]=\bigoplus_{i=1}^{n} U_{i}$ where each U_{i} has dimension 1 in this case. For each i let u_{i} be a nonzero vector in U_{i}. Then $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for $\mathbb{C}[G]$, and for each $g \in G, i \in I$, we have $g u_{i}=\lambda_{i} u_{i}$ for some $\lambda_{i} \in \mathbb{C}$. Thus, g is a diagonal matrix in this basis for all $g \in G$. Since any two diagonal matrices commute, we get that $g h=h g$ for all $g, h \in G$, and so the group is abelian.
10. Let G be a finite group and let $\rho: G \rightarrow G L(2, \mathbb{C})$ be a representation of G. Suppose that there are elements g, h in G such that the matrices $\rho(g)$ and $\rho(h)$ do not commute. Prove that ρ is irreducible.
Solution: Suppose ρ is reducible. Then there exists a proper nonzero $\mathbb{C}[G]$-submodule V of \mathbb{C}^{2}, which means that V is 1-dimensional. By Maschke's Theorem, there also exists a submodule W such that $\mathbb{C}^{2}=V \oplus W$. Let v, w be nonzero vectors of V and W, respectively. Note that $\{v, w\}$ is a basis of \mathbb{C}^{2} in this case, and so $\rho(g)$ and $\rho(h)$ act diagonally with respect to this basis and hence commute, which is a contradiction. Thus, ρ must be irreducible.

