LTCC: Representation Theory of Finite Groups Exercise Set 2

1. (From lecture:) Let A be the group algebra over \mathbb{C} of $G=C_{3}=\left\langle x \mid x^{3}=e\right\rangle$ and let $V=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be an A-module with representation $\rho\left(v_{i}\right)=v_{i+1} \bmod 3$. This module has a submodule $U=\left\langle v_{1}+v_{2}+v_{3}\right\rangle$. Find a submodule W such that $V=U \oplus W$.
2. Is the submodule W from the previous exercise irreducible?
3. Let V, W_{1}, W_{2} be A-modules. Show that

$$
\operatorname{Hom}_{A}\left(V, W_{1} \oplus W_{2}\right) \cong \operatorname{Hom}_{A}\left(V, W_{1}\right)+\operatorname{Hom}_{A}\left(V, W_{2}\right)
$$

as vector spaces (and thus their dimensions are the same).
4. Let G be a group. Suppose that ρ is a representation of G on a vector space V of dimension 1. Prove that $G / \operatorname{ker}(\rho)$ is abelian.
5. Let $\phi: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Prove that the map

$$
\rho: g \mapsto \operatorname{det}(\phi(g))
$$

is also a representation of G.
6. Let $\rho: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Show that $\sigma: G / \operatorname{ker}(\rho) \rightarrow G L(n, \mathbb{F})$ given by $\sigma(g \operatorname{ker}(\rho))=\rho(g)$ is a faithful representation of $G / \operatorname{ker}(\rho)$. (Recall from Exercise Sheet 1 that a faithful representation is injective. Note that here you must show that it is a well-defined representation, as well as showing that it is faithful.)
7. A simple group is a group that has no nontrivial, proper normal subgroups. Prove that for every finite simple group G, there exists a faithful irreducible $\mathbb{C}[G]$-module.
8. When constucting the regular representation of G over \mathbb{F}, we used the action of G on itself by left multiplication, ie $g \cdot x=g x$ for $g, x \in G$. In this problem, we will use other actions of G on itself to construct new representations with associated module $\mathbb{F}[G]$.
(a) Define the right multiplication action $\cdot: G \times G \rightarrow G$ by $g \cdot x=x g^{-1}$. Show that right multiplication is in fact an action of G on itself. Explain why the operation $g \cdot x=x g$ is not an action.
(b) Show that the representation given by right multiplication is equivalent to the representation given by left multiplication.
(c) Define the conjugation action $\cdot: G \times G \rightarrow G$ by $g \cdot x=g x g^{-1}$. Show that conjugation is in fact an action of G on itself.
(d) Show that in general, conjugation is not equivalent to left multiplication. (Hint: Consider $G=C_{3}$.)
9. Suppose G is a finite group such that every irreducible $\mathbb{C}[G]$-module has dimension 1. Show that G is abelian.
10. Let G be a finite group and let $\rho: G \rightarrow G L(2, \mathbb{C})$ be a representation of G. Suppose that there are elements g, h in G such that the matrices $\rho(g)$ and $\rho(h)$ do not commute. Prove that ρ is irreducible.

