LTCC: Representation Theory of Finite Groups Exercise Set 1

1. (From lecture:) Let A be an associative algebra and let V_1, V_2 be A-modules. Let $T: V_1 \to V_2$ be an intertwining operator. Show that ker(T) is a submodule of V_1 and that im(T) is a submodule of V_2 .

Solution: Since T is a linear map, we already know that $\ker(T)$ is a subspace of V_1 and $\operatorname{im}(T)$ is a subspace of V_2 .

Then we observe that if $v \in \ker(T)$, then for all $a \in A$, T(av) = aT(v) = a0 = 0, and hence $av \in \ker(T)$. Thus, $\ker(T)$ is a submodule of V_1 .

Then we observe that if $w \in im(T)$, then w = T(v) for some $v \in V_1$, and hence for any $a \in A$, aw = aT(v) = T(av), and hence $aw \in im(T)$ also. Thus, im(T) is a submodule of V_2 .

2. Let $D_4 = \{e, r, r^2, r^3, f, fr, fr^2, fr^3\}$. We define the following representations of $\mathbb{R}[D_4]$ on \mathbb{R}^2 :

$$\begin{split} \rho((f^j r^k) &= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^j \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^k \\ \sigma((f^j r^k) &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^j \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}^k \end{split}$$

Show that ρ and σ are isomorphic representations. (Please specify an explicit linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that shows this equivalence.)

Solution: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$. T is clearly a bijective linear map. It thus suffices to check that T commutes with the action of r and f, since these are the multiplicative generators of the algebra. We observe that

$$T\left(\rho(r)\left(\begin{bmatrix}x\\y\end{bmatrix}\right)\right) = T\left(\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(\begin{bmatrix}-y\\x\end{bmatrix}\right) = \begin{bmatrix}x\\-y\end{bmatrix}$$

and

$$\sigma(r)\left(T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)\right) = \begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix}\begin{bmatrix}y\\x\end{bmatrix} = \begin{bmatrix}x\\-y\end{bmatrix}.$$

We also have

$$T\left(\rho(f)\left(\begin{bmatrix}x\\y\end{bmatrix}\right)\right) = T\left(\begin{bmatrix}-1 & 0\\0 & 1\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(\begin{bmatrix}-x\\y\end{bmatrix}\right) = \begin{bmatrix}y\\-x\end{bmatrix}$$

and

$$\sigma(f)\left(T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)\right) = \begin{bmatrix}1 & 0\\0 & -1\end{bmatrix}\begin{bmatrix}y\\x\end{bmatrix} = \begin{bmatrix}y\\-x\end{bmatrix}.$$

Thus, T is an isomorphism of representations.

3. Let V be a nonzero finite dimensional A-module. Show that it has an irreducible submodule. Then show by example that this does not always hold for infinite dimensional representations.

Solution: For finite dimensional modules, we use induction on the dimension of the module. If V is 1-dimensional, then it is automatically irreducible (hence an irreducible submodule of itself). Now suppose the result holds for modules with dimension less than some fixed n, and let V be an n-dimensional A-module. Then either V is irreducible itself, or it has a nonzero proper submodule, U. Since $\dim(U) < n$, by the inductive hypothesis, U has an irreducible submodule, which is also an irreducible submodule of V.

Now let $A = \mathbb{F}[x]$, and let V = A be the regular A-module. We claim that V has no irreducible submodules. To see this, suppose U is a nonzero submodule of V. Then U contains a nonzero vector, say, v, and therefore contains all of Av. But since v is nonzero, then xv is nonzero, so Axv is a nonzero submodule of Av. But $v \notin Axv$ (compare lowest degree terms with nonzero coefficient), and so Axv is a nonzero proper submodule of Av, and therefore Av, and hence also U, is not irreducible.

- 4. Let A be an algebra over an algebraically closed field \mathbb{F} . The center Z(A) of A is the set of all elements $z \in A$ which commute with all elements of A. Note that if A is commutative, then Z(A) = A.
 - (a) Show that if V is an irreducible finite dimensional A-module, then any element $z \in Z(A)$ acts on V by multiplication by some scalar $\chi_V(z)$. Show that $\chi_V : Z(A) \to \mathbb{F}$ is a homomorphism. (This homomorphism is called the **central character** of V.)

Solution: Since every $z \in Z(A)$ commutes with the action of A, i.e. (az)v = (za)v for all $a \in A$, we have that the map $v \mapsto zv$ is an intertwining operator. Thus, by Schur's lemma for algebraically closed fields, z acts by a scalar λ_z on V.

The map $\chi_V : Z(A) \to \mathbb{F}$ given by $z \mapsto \lambda_z$ is also immediately a homomorphism since it is a linear map that commutes with the action of A.

(b) Show that if V is an indecomposable finite dimensional A-module, then for any $z \in Z(A)$, the operator $\rho(z)$ by which z acts on V has only one eigenvalue $\chi_V(z)$, equal to the scalar by which z acts on some irreducible submodule of

V. Thus $\chi_V : Z(A) \to \mathbb{F}$ is a homomorphism, which is again called the central character of V.

Solution: Fix $z \in Z(A)$. Then V has a basis of generalized eigenvectors and is a direct sum of generalized eigenspaces of z. Let λ be an eigenvalue of z and suppose $(z - \lambda 1)^m v = 0$. Then $(z - \lambda 1)^m av = a(z - \lambda 1)^m v = 0$, for all $a \in A$, since $(z - \lambda 1)^m$ is also in the centre. Therefore, each generalized eigenspace is a submodule of V. Since V is indecomposable, there can only be one of these, and hence there is a single eigenvalue of z. By the previous exercise, V has an irreducible submodule U, and by part (a), z acts on U by a scalar, which must then equal this eigenvalue.

(c) Does $\rho(z)$ have to be a scalar operator?

Solution: Even if V is indecomposable, $\rho(z)$ need not act by a scalar, as we have seen by example in Section 1.2, when $A = \mathbb{F}[x]$ and $V = \mathbb{F}^2$, with $\rho(x) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

5. Let A be an associative algebra, and let V be an A-module. By $\operatorname{End}_A(V)$ we denote the algebra of all homomorphisms of representations $V \to V$. Show that $\operatorname{End}_A(A) \cong A^{\operatorname{op}}$, the algebra A with opposite multiplication. [Here, we take A to act on itself via the regular representation.]

Solution: Define a map $T : \operatorname{End}_A(A) \to A^{\operatorname{op}}$ by $T(\phi) = \phi(1)$ (i.e. the map evaluates elements in $\operatorname{End}_A(A)$ at 1). An evaluation map is linear. We can verify that for $\phi, \psi \in \operatorname{End}_A(A)$, if $\phi(1) = a, \psi(1) = b$, we have $T(\phi \circ \psi) = \phi(\psi(1)) = \phi(b) = \phi(b1) = b\phi(1) = ba = T(\psi)T(\phi)$.

6. Let $C_n = \langle x \rangle$ be the cyclic group of order *n* generated by *x*. For $0 \leq j < n$, let $\rho_j : \mathbb{C}[C_n] \to End(\mathbb{C}) \cong \mathbb{C}$ be the map given by

$$\rho_j(x^t) = e^{2\pi i j t/n}.$$

(Note that $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.)

- (a) For which values of j is ρ_j a representation of $\mathbb{C}[C_n]$? Solution: Since x^n is the identity element in C_n , we require $\rho_j(x^n) = e^{2\pi i j} = 1$. This is satisfied by all j, and thus ρ_j a representation of $\mathbb{C}[C_n]$ for all $0 \le j < n$.
- (b) We say a representation is **faithful** if it is injective. For which values of j is ρ_j a faithful representation of $\mathbb{C}[C_n]$? Solution: For ρ_j to be faithful, we require $\rho_j(x^t) \neq 1$ for 0 < t < n, which

Solution: For ρ_j to be faithful, we require $\rho_j(x^i) \neq 1$ for 0 < t < n, which means $e^{2\pi i j t/n} \neq 1$ for 0 < t < n. This is satisfied by all j coprime to n.

7. Suppose V is an A-module and W is a submodule of V. Show that V/W is also an A-module.

Solution: Define an action of A on V/W by a(v+W) = av + W. To check that this is well-defined, suppose v+W = v'+W. Then $v-v' \in W$. Since W is a submodule, we have $a(v-v') \in W$, and hence $av - av' \in W$. Thus av + W = av' + W.