LTCC: Representation Theory of Finite Groups Exercise Set 1

1. (From lecture:) Let A be an associative algebra and let V_{1}, V_{2} be A-modules. Let $T: V_{1} \rightarrow V_{2}$ be an intertwining operator. Show that $\operatorname{ker}(T)$ is a submodule of V_{1} and that $\operatorname{im}(T)$ is a submodule of V_{2}.
Solution: Since T is a linear map, we already know that $\operatorname{ker}(T)$ is a subspace of V_{1} and $\operatorname{im}(T)$ is a subspace of V_{2}.
Then we observe that if $v \in \operatorname{ker}(T)$, then for all $a \in A, T(a v)=a T(v)=a 0=0$, and hence $a v \in \operatorname{ker}(T)$. Thus, $\operatorname{ker}(T)$ is a submodule of V_{1}.
Then we observe that if $w \in \operatorname{im}(T)$, then $w=T(v)$ for some $v \in V_{1}$, and hence for any $a \in A, a w=a T(v)=T(a v)$, and hence $a w \in \operatorname{im}(T)$ also. Thus, $\operatorname{im}(T)$ is a submodule of V_{2}.
2. Let $D_{4}=\left\{e, r, r^{2}, r^{3}, f, f r, f r^{2}, f r^{3}\right\}$. We define the following representations of $\mathbb{R}\left[D_{4}\right]$ on \mathbb{R}^{2} :

$$
\begin{aligned}
\rho\left(\left(f^{j} r^{k}\right)\right. & =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]^{j}\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]^{k} \\
\sigma\left(\left(f^{j} r^{k}\right)\right. & =\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]^{j}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{k}
\end{aligned}
$$

Show that ρ and σ are isomorphic representations. (Please specify an explicit linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that shows this equivalence.)
Solution: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ x\end{array}\right] . T$ is clearly a bijective linear map. It thus suffices to check that T commutes with the action of r and f, since these are the multiplicative generators of the algebra. We observe that

$$
T\left(\rho(r)\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=T\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=T\left(\left[\begin{array}{c}
-y \\
x
\end{array}\right]\right)=\left[\begin{array}{c}
x \\
-y
\end{array}\right]
$$

and

$$
\sigma(r)\left(T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{c}
x \\
-y
\end{array}\right]
$$

We also have

$$
T\left(\rho(f)\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=T\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=T\left(\left[\begin{array}{c}
-x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
y \\
-x
\end{array}\right]
$$

and

$$
\sigma(f)\left(T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{c}
y \\
-x
\end{array}\right] .
$$

Thus, T is an isomorphism of representations.
3. Let V be a nonzero finite dimensional A-module. Show that it has an irreducible submodule. Then show by example that this does not always hold for infinite dimensional representations.
Solution: For finite dimensional modules, we use induction on the dimension of the module. If V is 1 -dimensional, then it is automatically irreducible (hence an irreducible submodule of itself). Now suppose the result holds for modules with dimension less than some fixed n, and let V be an n-dimensional A-module. Then either V is irreducible itself, or it has a nonzero proper submodule, U. Since $\operatorname{dim}(U)<n$, by the inductive hypothesis, U has an irreducible submodule, which is also an irreducible submodule of V.
Now let $A=\mathbb{F}[x]$, and let $V=A$ be the regular A-module. We claim that V has no irreducible submodules. To see this, suppose U is a nonzero submodule of V. Then U contains a nonzero vector, say, v, and therefore contains all of $A v$. But since v is nonzero, then $x v$ is nonzero, so $A x v$ is a nonzero submodule of $A v$. But $v \notin A x v$ (compare lowest degree terms with nonzero coefficient), and so $A x v$ is a nonzero proper submodule of $A v$, and therefore $A v$, and hence also U, is not irreducible.
4. Let A be an algebra over an algebraically closed field \mathbb{F}. The center $Z(A)$ of A is the set of all elements $z \in A$ which commute with all elements of A. Note that if A is commutative, then $Z(A)=A$.
(a) Show that if V is an irreducible finite dimensional A-module, then any element $z \in Z(A)$ acts on V by multiplication by some scalar $\chi_{V}(z)$. Show that χ_{V} : $Z(A) \rightarrow \mathbb{F}$ is a homomorphism. (This homomorphism is called the central character of V.)
Solution: Since every $z \in Z(A)$ commutes with the action of A, i.e. $(a z) v=$ $(z a) v$ for all $a \in A$, we have that the map $v \mapsto z v$ is an intertwining operator. Thus, by Schur's lemma for algebraically closed fields, z acts by a scalar λ_{z} on V.
The map $\chi_{V}: Z(A) \rightarrow \mathbb{F}$ given by $z \mapsto \lambda_{z}$ is also immediately a homomorphism since it is a linear map that commutes with the action of A.
(b) Show that if V is an indecomposable finite dimensional A-module, then for any $z \in Z(A)$, the operator $\rho(z)$ by which z acts on V has only one eigenvalue $\chi_{V}(z)$, equal to the scalar by which z acts on some irreducible submodule of
V. Thus $\chi_{V}: Z(A) \rightarrow \mathbb{F}$ is a homomorphism, which is again called the central character of V.
Solution: Fix $z \in Z(A)$. Then V has a basis of generalized eigenvectors and is a direct sum of generalized eigenspaces of z. Let λ be an eigenvalue of z and suppose $(z-\lambda 1)^{m} v=0$. Then $(z-\lambda 1)^{m} a v=a(z-\lambda 1)^{m} v=0$, for all $a \in A$, since $(z-\lambda 1)^{m}$ is also in the centre. Therefore, each generalized eigenspace is a submodule of V. Since V is indecomposable, there can only be one of these, and hence there is a single eigenvalue of z. By the previous exercise, V has an irreducible submodule U, and by part (a), z acts on U by a scalar, which must then equal this eigenvalue.
(c) Does $\rho(z)$ have to be a scalar operator?

Solution: Even if V is indecomposable, $\rho(z)$ need not act by a scalar, as we have seen by example in Section 1.2 , when $A=\mathbb{F}[x]$ and $V=\mathbb{F}^{2}$, with $\rho(x)=$ $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
5. Let A be an associative algebra, and let V be an A-module. By $\operatorname{End}_{A}(V)$ we denote the algebra of all homomorphisms of representations $V \rightarrow V$. Show that $\operatorname{End}_{A}(A) \cong A^{\mathrm{op}}$, the algebra A with opposite multiplication. [Here, we take A to act on itself via the regular representation.]
Solution: Define a map $T: \operatorname{End}_{A}(A) \rightarrow A^{\mathrm{op}}$ by $T(\phi)=\phi(1)$ (i.e. the map evaluates elements in $\operatorname{End}_{A}(A)$ at 1). An evaluation map is linear. We can verify that for $\phi, \psi \in \operatorname{End}_{A}(A)$, if $\phi(1)=a, \psi(1)=b$, we have $T(\phi \circ \psi)=\phi(\psi(1))=\phi(b)=$ $\phi(b 1)=b \phi(1)=b a=T(\psi) T(\phi)$.
6. Let $C_{n}=\langle x\rangle$ be the cyclic group of order n generated by x. For $0 \leq j<n$, let $\rho_{j}: \mathbb{C}\left[C_{n}\right] \rightarrow \operatorname{End}(\mathbb{C}) \cong \mathbb{C}$ be the map given by

$$
\rho_{j}\left(x^{t}\right)=e^{2 \pi i j t / n} .
$$

(Note that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.)
(a) For which values of j is ρ_{j} a representation of $\mathbb{C}\left[C_{n}\right]$?

Solution: Since x^{n} is the identity element in C_{n}, we require $\rho_{j}\left(x^{n}\right)=e^{2 \pi i j}=1$. This is satisfied by all j, and thus ρ_{j} a representation of $\mathbb{C}\left[C_{n}\right]$ for all $0 \leq j<n$.
(b) We say a representation is faithful if it is injective. For which values of j is ρ_{j} a faithful representation of $\mathbb{C}\left[C_{n}\right]$?
Solution: For ρ_{j} to be faithful, we require $\rho_{j}\left(x^{t}\right) \neq 1$ for $0<t<n$, which means $e^{2 \pi i j t / n} \neq 1$ for $0<t<n$. This is satisfied by all j coprime to n.
7. Suppose V is an A-module and W is a submodule of V. Show that V / W is also an A-module.
Solution: Define an action of A on V / W by $a(v+W)=a v+W$. To check that this is well-defined, suppose $v+W=v^{\prime}+W$. Then $v-v^{\prime} \in W$. Since W is a submodule, we have $a\left(v-v^{\prime}\right) \in W$, and hence $a v-a v^{\prime} \in W$. Thus $a v+W=a v^{\prime}+W$.

