
LTCC: Representation Theory of Finite Groups
Exercise Set 1

1. (From lecture:) Let A be an associative algebra and let V1, V2 be A-modules. Let
T : V1 → V2 be an intertwining operator. Show that ker(T ) is a submodule of V1
and that im(T ) is a submodule of V2.

Solution: Since T is a linear map, we already know that ker(T ) is a subspace of V1
and im(T ) is a subspace of V2.

Then we observe that if v ∈ ker(T ), then for all a ∈ A, T (av) = aT (v) = a0 = 0,
and hence av ∈ ker(T ). Thus, ker(T ) is a submodule of V1.

Then we observe that if w ∈ im(T ), then w = T (v) for some v ∈ V1, and hence for
any a ∈ A, aw = aT (v) = T (av), and hence aw ∈ im(T ) also. Thus, im(T ) is a
submodule of V2.

2. Let D4 = {e, r, r2, r3, f, fr, fr2, fr3} . We define the following representations of
R[D4] on R2:

ρ((f jrk) =

[
−1 0

0 1

]j [
0 −1
1 0

]k
σ((f jrk) =

[
1 0
0 −1

]j [
0 1
−1 0

]k
Show that ρ and σ are isomorphic representations. (Please specify an explicit linear
transformation T : R2 → R2 that shows this equivalence.)

Solution: Let T : R2 → R2 be given by T

[
x
y

]
=

[
y
x

]
. T is clearly a bijective linear

map. It thus suffices to check that T commutes with the action of r and f , since
these are the multiplicative generators of the algebra. We observe that

T

(
ρ(r)

([
x
y

]))
= T

([
0 −1
1 0

] [
x
y

])
= T

([
−y
x

])
=

[
x
−y

]
and

σ(r)

(
T

([
x
y

]))
=

[
0 1
−1 0

] [
y
x

]
=

[
x
−y

]
.

We also have

T

(
ρ(f)

([
x
y

]))
= T

([
−1 0

0 1

] [
x
y

])
= T

([
−x
y

])
=

[
y
−x

]
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and

σ(f)

(
T

([
x
y

]))
=

[
1 0
0 −1

] [
y
x

]
=

[
y
−x

]
.

Thus, T is an isomorphism of representations.

3. Let V be a nonzero finite dimensional A-module. Show that it has an irreducible
submodule. Then show by example that this does not always hold for infinite
dimensional representations.

Solution: For finite dimensional modules, we use induction on the dimension of the
module. If V is 1-dimensional, then it is automatically irreducible (hence an irre-
ducible submodule of itself). Now suppose the result holds for modules with dimen-
sion less than some fixed n, and let V be an n-dimensional A-module. Then either
V is irreducible itself, or it has a nonzero proper submodule, U . Since dim(U) < n,
by the inductive hypothesis, U has an irreducible submodule, which is also an irre-
ducible submodule of V .

Now let A = F[x], and let V = A be the regular A-module. We claim that V has no
irreducible submodules. To see this, suppose U is a nonzero submodule of V . Then
U contains a nonzero vector, say, v, and therefore contains all of Av. But since v is
nonzero, then xv is nonzero, so Axv is a nonzero submodule of Av. But v /∈ Axv
(compare lowest degree terms with nonzero coefficient), and so Axv is a nonzero
proper submodule of Av, and therefore Av, and hence also U , is not irreducible.

4. Let A be an algebra over an algebraically closed field F. The center Z(A) of A is
the set of all elements z ∈ A which commute with all elements of A. Note that if A
is commutative, then Z(A) = A.

(a) Show that if V is an irreducible finite dimensional A-module, then any element
z ∈ Z(A) acts on V by multiplication by some scalar χV (z). Show that χV :
Z(A) → F is a homomorphism. (This homomorphism is called the central
character of V .)

Solution: Since every z ∈ Z(A) commutes with the action of A, i.e. (az)v =
(za)v for all a ∈ A, we have that the map v 7→ zv is an intertwining operator.
Thus, by Schur’s lemma for algebraically closed fields, z acts by a scalar λz on
V .

The map χV : Z(A)→ F given by z 7→ λz is also immediately a homomorphism
since it is a linear map that commutes with the action of A.

(b) Show that if V is an indecomposable finite dimensional A-module, then for
any z ∈ Z(A), the operator ρ(z) by which z acts on V has only one eigenvalue
χV (z), equal to the scalar by which z acts on some irreducible submodule of
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V . Thus χV : Z(A)→ F is a homomorphism, which is again called the central
character of V .

Solution: Fix z ∈ Z(A). Then V has a basis of generalized eigenvectors and is
a direct sum of generalized eigenspaces of z. Let λ be an eigenvalue of z and
suppose (z − λ1)mv = 0. Then (z − λ1)mav = a(z − λ1)mv = 0, for all a ∈ A,
since (z − λ1)m is also in the centre. Therefore, each generalized eigenspace is
a submodule of V . Since V is indecomposable, there can only be one of these,
and hence there is a single eigenvalue of z. By the previous exercise, V has an
irreducible submodule U , and by part (a), z acts on U by a scalar, which must
then equal this eigenvalue.

(c) Does ρ(z) have to be a scalar operator?

Solution: Even if V is indecomposable, ρ(z) need not act by a scalar, as we
have seen by example in Section 1.2, when A = F[x] and V = F2, with ρ(x) =[
1 1
0 1

]
.

5. Let A be an associative algebra, and let V be an A-module. By EndA(V ) we
denote the algebra of all homomorphisms of representations V → V . Show that
EndA(A) ∼= Aop, the algebra A with opposite multiplication. [Here, we take A to
act on itself via the regular representation.]

Solution: Define a map T : EndA(A)→ Aop by T (φ) = φ(1) (i.e. the map evaluates
elements in EndA(A) at 1). An evaluation map is linear. We can verify that for
φ, ψ ∈ EndA(A), if φ(1) = a, ψ(1) = b, we have T (φ ◦ ψ) = φ(ψ(1)) = φ(b) =
φ(b1) = bφ(1) = ba = T (ψ)T (φ).

6. Let Cn = 〈x〉 be the cyclic group of order n generated by x. For 0 ≤ j < n, let
ρj : C[Cn]→ End(C) ∼= C be the map given by

ρj(x
t) = e

2πijt/n.

(Note that eiθ = cos(θ) + i sin(θ).)

(a) For which values of j is ρj a representation of C[Cn]?

Solution: Since xn is the identity element in Cn, we require ρj(x
n) = e2πij = 1.

This is satisfied by all j, and thus ρj a representation of C[Cn] for all 0 ≤ j < n.

(b) We say a representation is faithful if it is injective. For which values of j is ρj
a faithful representation of C[Cn]?

Solution: For ρj to be faithful, we require ρj(x
t) 6= 1 for 0 < t < n, which

means e2πijt/n 6= 1 for 0 < t < n. This is satisfied by all j coprime to n.
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7. Suppose V is an A-module and W is a submodule of V . Show that V/W is also an
A-module.

Solution: Define an action of A on V/W by a(v+W ) = av+W. To check that this
is well-defined, suppose v+W = v′ +W. Then v−v′ ∈ W . Since W is a submodule,
we have a(v − v′) ∈ W, and hence av − av′ ∈ W . Thus av +W = av′ +W.
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