LTCC: Representation Theory of Finite Groups Exercise Set 1

1. (From lecture:) Let A be an associative algebra and let V_{1}, V_{2} be A-modules. Let $T: V_{1} \rightarrow V_{2}$ be an intertwining operator. Show that $\operatorname{ker}(T)$ is a submodule of V_{1} and that $\operatorname{im}(T)$ is a submodule of V_{2}.
2. Let $D_{4}=\left\{e, r, r^{2}, r^{3}, f, f r, f r^{2}, f r^{3}\right\}$. We define the following representations of $\mathbb{R}\left[D_{4}\right]$ on \mathbb{R}^{2} :

$$
\begin{aligned}
& \rho\left(\left(f^{j} r^{k}\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]^{j}\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]^{k}\right. \\
& \sigma\left(\left(f^{j} r^{k}\right)=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]^{j}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{k}\right.
\end{aligned}
$$

Show that ρ and σ are isomorphic representations. (Please specify an explicit linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that shows this equivalence.)
3. Let V be a nonzero finite dimensional A-module. Show that it has an irreducible submodule. Then show by example that this does not always hold for infinite dimensional representations.
4. Let A be an algebra over an algebraically closed field \mathbb{F}. The center $Z(A)$ of A is the set of all elements $z \in A$ which commute with all elements of A. Note that if A is commutative, then $Z(A)=A$.
(a) Show that if V is an irreducible finite dimensional A-module, then any element $z \in Z(A)$ acts on V by multiplication by some scalar $\chi_{V}(z)$. Show that χ_{V} : $Z(A) \rightarrow \mathbb{F}$ is a homomorphism. (This homomorphism is called the central character of V.)
(b) Show that if V is an indecomposable finite dimensional A-module, then for any $z \in Z(A)$, the operator $\rho(z)$ by which z acts on V has only one eigenvalue $\chi_{V}(z)$, equal to the scalar by which z acts on some irreducible submodule of V. Thus $\chi_{V}: Z(A) \rightarrow \mathbb{F}$ is a homomorphism, which is again called the central character of V.
(c) Does $\rho(z)$ have to be a scalar operator?
5. Let A be an associative algebra, and let V be an A-module. By $\operatorname{End}_{A}(V)$ we denote the algebra of all homomorphisms of representations $V \rightarrow V$. Show that $\operatorname{End}_{A}(A) \cong A^{\mathrm{Op}}$, the algebra A with opposite multiplication. [Here, we take A to act on itself via the regular representation.]
6. Let $C_{n}=\langle x\rangle$ be the cyclic group of order n generated by x. For $0 \leq j<n$, let $\rho_{j}: \mathbb{C}\left[C_{n}\right] \rightarrow \operatorname{End}(\mathbb{C}) \cong \mathbb{C}$ be the map given by

$$
\rho_{j}\left(x^{t}\right)=e^{2 \pi i j t / n} .
$$

(Note that $e^{i \theta}=\cos (\theta)+i \sin (\theta)$.)
(a) For which values of j is ρ_{j} a representation of $\mathbb{C}\left[C_{n}\right]$?
(b) We say a representation is faithful if it is injective. For which values of j is ρ_{j} a faithful representation of $\mathbb{C}\left[C_{n}\right]$?
7. Suppose V is an A-module and W is a submodule of V. Show that V / W is also an A-module.

