Examples: (Tables copied from last lecture)
$C_{1} = C_{3} = \langle x \rangle$
$\frac{9!}{129!} = \frac{x}{3} \times \frac{x^2}{3}$ $\frac{129!}{3} = \frac{x}{3} \times \frac{x^2}{3}$
γ . γ
$(a) \qquad (a) \qquad (b) \qquad (a) \qquad (b) \qquad (c) $
\sim
$W_1 \uparrow_{C_3}^{D_3} = \langle e_{+r} + r^2, f_{+} + f_{r}^2 \rangle$ $= U_1 \oplus U_2$
2) $G = D_3 = \langle r, f r^3 = e, f^2 = e, fr = r^{-1}f \rangle$
$ Cl(qi) = r f$ $ Cl(qi) = 2 3$ $ Cl(qi) = (e + \omega r + \omega^2 r^2, f + \omega f r + \omega^2 f r^2)$
χ_{i} i $\rightarrow U_{i}$ = U_{3} ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Example 3:
$G = A_{4}$
g_{i} id (12)(34) (123) (132) Ay Sy $\frac{12(g_{i})}{12}$ $\frac{12}{4}$ $\frac{4}{3}$ $\frac{3}{3}$ $\frac{1}{4}$ $\frac{1}{4$
$\frac{1}{2} \frac{1}{2} \frac{1}$
$\frac{1}{2}$ $\frac{1}$
74 X4 3 -1 0 0 Y4= 24 JA4 = 26 JA4.

· 9; · · · · · · · · · · · · · · · · · ·	e (12) (12)(34) (123) (1234) 1 6 3 8 6 24 4 8 3 4
21 · · · · · · · · · · · · · · · · · · ·	
χ_3	2
· Z4 · ·	3
. 75	3 [

5.1) Restriction

Defn 1: Let H be a subap of G. Then any C[G] - module V can be regarded as a C[H] - module, in which case we denote it by VIH (or VIH or ResH(V)) or ResH(V)) and call it the restriction of V to H.

• IF V has character X, then VIH has character XIH.

Note: x irred > X V H irred.

Prop 1: Let H be a subgp of G and Ψ a nonzero char of H.

Then there exists an irred char χ of G s.t. $\langle \chi \downarrow H, \Psi \rangle \neq 0$.

Pf: Let χ_1, \dots, χ_K be the irred chars of G. Let Q be the regular character of G. Then $Q = \sum_i \chi_i(e) \chi_i$.

Now observe that the req. module C[G] contains C[H] is closed under the action of H (so C[H] is a C[H]-submod of Res_H (C[G])).

Suppose Ψ is irred Then the corr. C[H]-mod. V is a C[H]-submod of C[H]. Therefore, $\langle QVH, \Psi \rangle \neq 0$, so $0 \neq \langle \sum \chi_i(e) \chi_i VH, \Psi \rangle = \sum \chi_i(e) \langle \chi_i VH, \Psi \rangle_{+}^{2}$.

and so $(\chi_i)H$, $\Psi \neq 0$ for some i. We can extend this to reducible Ψ by noting that For some constituent Ψ_j of Ψ , \exists i s.t $(\chi_i)H$, $(\Psi_j) \neq 0$.

Thun 1: (Clifford's Thin) Suppose HJG, & an irred char of G and Y,,..., Ym the constituents of XVH. Then: i) the Y; all have the same degree ii) (XJH, Yi) is the same for all Y;

PF: i) Let V be n CTG] - mod corr to D and let U be an irred CTH] - submod of VIH. Then $\forall q \in G$, the set $gU = \mathcal{E}gu \mid u \in U \mathcal{E}gu \mid u \in$

Now suppose W is a submodule of gU. Then g'W is a submod of U and hence g'W is a submod of U. Hence g'W is a submod of U. Hence g'W is U or EO3 (because U is irred) and so Wis gl or EO3, and hence gl is irred. Moreover, since

g is an invertible linear trans, dim gl = dim ll.

Finally, note that \(\sum_{g} \) | S (CG) - submod of V

and so \(V = \sum_{g} \) | Thus, \(V = g_1 \) | \(\theta g_2 \) | \(\theta g_2 \) | \(\theta g_k \) |.

ii) Exercise

Prop 2: Let H be a subgp of G, let χ be an irred char of G and let $V_1,...,V_r$ be the irred chars of H. Then where $\sum d_i^2 \leq [G:H] = \frac{1}{2} I_{HI}$. Equality holds iff $\chi(g) = 0 \forall g \in G - H$.

 $\underbrace{Pf: \cdot \sum_{\alpha} d_{\alpha}^{2}}_{i} = \langle \chi_{\alpha} H_{\alpha}, \chi_{\alpha} | H_{\alpha} \rangle_{H_{\alpha}} = \underbrace{\frac{1}{1H1} \sum_{\alpha \in H_{\alpha}} \chi(\alpha) \chi(\alpha)}_{h \in H_{\alpha}} \chi(\alpha) \chi(\alpha) + \underbrace{\frac{1}{1H1} \sum_{\alpha \in H_{\alpha}} \chi(\alpha) \chi(\alpha)}_{g \in G-H_{\alpha}} \chi(\alpha) \chi(\alpha)}_{g \in G-H_{\alpha}} = \underbrace{\frac{1}{1H1} \sum_{\alpha \in H_{\alpha}} \chi(\alpha) \chi(\alpha)}_{l \in G} \chi(\alpha) + K$

where K>0.

5.2) Induction

Let $H \leq G$ and let g_1, \dots, g_k be representatives of the left cosets of H in G. Then given a $\mathbb{C}[\mathbb{P}^1]$ -module W, we wish to define a $\mathbb{C}[G]$ -module V s.t. $V=g_1W\oplus g_2W\oplus \cdots \oplus g_kW$.

Defn 1: Let U be an irred C[H] - mod. Then, viewing U as a submodule of C[H] (the regular module), define U 1 G = Egu 1 g EG, u E U B.

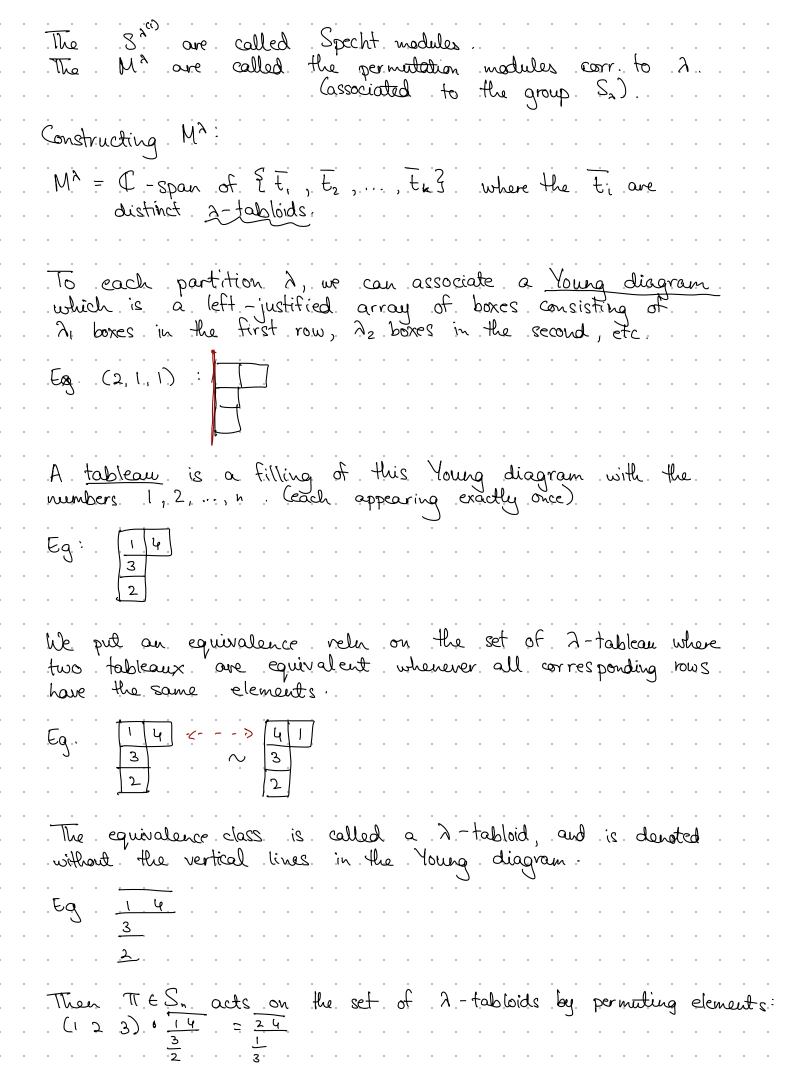
We call U 1 G (or U 1 H or Indy (U)) the C[G]-module induced from U.

For a general C[H]-mod U, we have U = DU; where the U; are irred O[H]-submods. Then U1G = D(U;1G).

• IF U has character Y, then the character of U1G is denoted 476.

Thun 1: (Frobenius Reciprocity Thun:) Let Υ be a char of H and let χ be a char of G. Then: $\langle \Upsilon \uparrow G, \chi \rangle_G = \langle \Upsilon, \chi \downarrow H \rangle_{\#}$.

```
Prop 1: Lot \mathcal{Y} be a char of \mathcal{H}. Then let \mathcal{Y}: G \to \mathbb{C} be given by \mathcal{Y}(g) = \mathcal{S}\mathcal{Y}(g) if g \in \mathcal{H}


Then \mathcal{Y}(G) = \mathcal{Y}(g) = \mathcal{Y}(g).

Then \mathcal{Y}(G) = \mathcal{Y}(g) = \mathcal{Y}(g).
5.3) Repri Theory of Sn: [Following Bruce Sagan - The Symmetric Group]
      The conjugacy classes of S_h are given by cycle types, e.g. (1 2 3)(45)(6 7)(8)
          These are indexed by partitions \lambda = (\lambda_1, \lambda_2, ..., \lambda_k) of n where \lambda_1 \in \mathbb{Z}_{>0}, \lambda_1 + \lambda_2 + \cdots + \lambda_k = n and \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k. We write |\lambda| = \mathbb{Z}\lambda_1, and if |\lambda| = n we write \lambda + n is a partition of
                                                                                                                                                                                                                                              is a partition of
            Eq: n=4: Partitions of 4:
                     (1,1,1,1), (2,1,1), (2,2), (3,1), (4)

(1)(2)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(3)(4), (12)(
          Q: How might we find an irred report correcto At n?
           Let Sx be the Subgp of Sn given by
                                                    S_{\xi_1,2,\ldots,\lambda_1;\xi} \times S_{\xi_{\lambda_1+1},\ldots,\lambda_1+\lambda_2;\xi} \times \cdots \times S_{\xi_{N-\lambda_k+1},\ldots,n;\xi}
                                      \cong S_{\lambda_1} \times S_{\lambda_2} \times \cdots \times S_{\lambda_n}
          Let M^{\lambda} be the module associated to 11_{S_{\lambda}}^{S_{n}}. This is not generally irreducible.
           BUT, we can order the partitions of a such that
          M_{\alpha}^{(n)} is irreducible (call it S_{\alpha}^{(n)})

M_{\alpha}^{(n)} contains copies of S_{\alpha}^{(n)} and a unique copy of a new irreducible submodule (call it S_{\alpha}^{(n)})

M_{\alpha}^{(n)} contains copies of S_{\alpha}^{(n)} for \lambda_{\alpha}^{(n)} < \lambda_{\alpha}^{(n)} and a unique copy of a new irreducible submodule (call it S_{\alpha}^{(n)}).
```


1) If $\lambda = (n)$, then $M^{(n)} = \langle \frac{123 \dots n}{} \rangle$

and Sn acts on this trivially. This is a 1-dim module, This has character 115.

2) If $\lambda = (1, 1, \dots, 1) = (1^n)$, then

 $\operatorname{M}_{(L_{\mathfrak{b},\mathfrak{b}})}^{(L_{\mathfrak{b},\mathfrak{b}})} = \operatorname{M}_{(L_{\mathfrak{b},\mathfrak{b}})}^{(L_{\mathfrak{b},\mathfrak{b}})} = \operatorname{M}_{(L_{\mathfrak{b},\mathfrak{b}})}^{(L_{\mathfrak{b},\mathfrak{b}})}$

This is isomorphic to the regular representation of S_n .

1 $\uparrow S_n = 1 \uparrow S_n = Q$ (reg. character)

3) It $\lambda = (n-1, 1)$, then

This is isomorphic to the defining permutation repri of Sn. Sn Q &1,2,...,n}

Char: $1 \uparrow_{S_{Ch-1,1}}^{S_h}(g) = 1 f_{ix}(g)1$.

The order on the set of λ needed to extract the Specht modules from the M' is reverse-lexicographic ordering.

(1,1,...,1) < (2,1,...1) < (2,2,1,...1) < ... < (n-1,1) < (n)