From last time:
Throughout, we set $\mathbb{F}=\mathbb{C}, A=\mathbb{C}[G]$ for finite $g p G:$
Defu 1: Let G be a finite g_{p} and let $F(G, \mathbb{C})$ be the space of functions $G \xrightarrow{\longrightarrow}$. Define an inner product on $F(G, \mathbb{C})$ by:

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

Then 1: Let U, V be irred $\mathbb{C}[G]$-modules with chars x, ψ resp.
Then

$$
\langle x, \psi\rangle= \begin{cases}1 & \text { if } u \cong V[x=\psi \text { in this }] \\ 0 & \text { if } u \nsubseteq V\end{cases}
$$

Prop 1: Let x be the char of the regular reps. Then $x(e)=|G|$, and

$$
\hat{x}(g)=0 \text { for } g \neq e \text {. }
$$

HW Prop 2: Let x be the char of a permutation rep (S_{n} acting on $V=\left\langle 1, \ldots, v_{n}\right\}$)
Then $x(g)=|f i x(g)|$ $S_{n}, 2 V: \sigma \cdot V_{i}=V_{\sigma(i)}$ where $f_{i x}(g)=\{i \in\{1, \ldots n\} \mid g(i)=i\}$
Cor 1: Let x be the char of a perm rep Then $\left.\widetilde{x}^{(g)}\right)^{x}=\left|f_{i x}(g)\right|-1$ is also a character of S_{n}.
Pf: $U=\left\langle v_{1}+v_{2}+\cdots+v_{n}\right\rangle$ is a submodule of the permutation module V, and. Sn acts trivially on U.
4.1) The Space of Class Functions on G

Throughout, G is finite , $\mathbb{F}=\mathbb{C}$.
Let $F_{c}(G, \mathbb{C})$ be the space of class functions on G.
Prop 1: $\operatorname{dim} F_{c}(G, \mathbb{C})=\#$ of conj classes of G distinct.
PF: Let x_{1}, \ldots, x_{l} be representatives of the distictin. classes of G Then $f_{i} \in F_{c}(G, \mathbb{C})$ given by:
$f_{i}(x)= \begin{cases}1 & \text { if } x \text { is cony to } x_{i} \\ 0 & \text { otherwise }\end{cases}$
is a basis for $F_{c}(G, \mathbb{C})$

Now let x_{1}, \ldots, x_{k} be a complete set of distinct irred chars of G.
Prop 2: The x_{i} are Linearly independent.
Pf: Suppose $\sum_{i=1}^{k} c_{i} x_{i}=0$, Then $\forall j$:

$$
0=\left\langle\sum \frac{c_{i} x_{i}}{0}, x_{j}\right\rangle=\sum c_{i}\left\langle x_{i}, x_{j}\right\rangle=c_{j}
$$

Lemma l: Let $f \in F_{c}(G, \mathbb{C})$ and P an irred rep of G on an n-dim module. V with char X. Then $Q: V \rightarrow V$ given by $C=\sum_{g \in G} f(g) p(g)$ equals $\lambda 1_{v}$, where $\lambda=\frac{|G|}{n}\langle f, \bar{x}\rangle$.

PF: We observe $\forall g \in G$:

$$
\begin{aligned}
p(g)^{-1} \varphi p(g) & =p\left(g^{-1}\right) \sum_{x \in G} f(x) p(x) p(g)=\sum_{x \in G} f(x) p\left(g^{-1} x g\right) \\
& =\sum_{y \in G} f\left(g y g^{-1} p(y)=\sum_{y \in G} f(y) p(y)=Q\right.
\end{aligned}
$$

Thus, $Q p(g)=p(g) C Q$, and hence Q is a $\mathbb{C}[G]$-hon, and so by Schuirs Lemma, $Q=\lambda 1_{v}$ for some $\lambda \in \mathbb{C}$. In fact:

$$
\operatorname{tr}(\varphi)=n \lambda=\sum_{g \in G} f(g) x(g)=|G|\langle f, \bar{x}\rangle
$$

Prop 3: Let x be a char of G. Then \bar{X} is also a char of G, and \bar{X} is irred ff X is irred
Pf: If $P: G \rightarrow G((n, \mathbb{C})$ is a rep n, then so is $\sigma(g)=\overline{p(g)}$ Also, $\langle\bar{x}, \bar{x}\rangle=\langle x, x\rangle$, so $\langle\bar{x}, \bar{x}\rangle=1$ inf $\langle x, x\rangle=1$,
Lemma 2: If $f \in F_{c}(G, \mathbb{C})$ and $\left\langle f, x_{i}\right\rangle=0 \forall i$, then $f=0$
Pf: Since $\left\{x_{1}, \ldots, x_{k}\right\}=\left\{\bar{x}_{1}, \ldots, \overline{x_{k}}\right\}$, we have
$\left\langle f, \bar{x}_{i}\right\rangle=0 \quad \forall i$ Let $Q_{p}=\sum f(g) p(g)$:
If P is irred, then by Lemma,$Q_{p}=0$.
If P^{\prime} is red, then Q_{p} acts by 0 on every irred submedule, and so again, $Q_{P}=0$.

Now let p be the regular reps. Then for $h \in G$, $C_{p}(h)=\sum f(g) g h=0$.

Since $\{g h \lg \in G\}=G$ forms a bases for the regular module, we have $f(g)=0 \quad \forall g \in G$.
Prop 4: The x span $F_{c}(G, \mathbb{C})$)
Pf: Let $f \in F_{c}(G, \mathbb{C})^{c}$. Let $\tilde{f}=f-\sum_{i}\left\langle f, x_{i}\right\rangle x_{i}$. Then $\left\langle\tilde{f}, x_{j}\right\rangle=\left\langle f, x_{j}\right\rangle-\sum_{i}\left\langle f, x_{i}\right\rangle\left\langle x_{i}, x_{j}\right\rangle=0 \quad \forall j ;$ and so $\tilde{f}=0$. Thus, $f=\sum\left\langle f, x_{i}\right\rangle x_{i}$

Cor 1: The x_{i} form a basis for $F_{c}(G, \mathbb{C})$, and the number of distinct irred chars equals the number of distinct conjugacy classes
Cor 2: Suppose $g, h \in G$ Then g is cony to h iff $x(g)=x(h)$ for all characters x of G.

Pf (\Leftrightarrow) Let $\left.f \in F_{c} \subset G, \mathbb{C}\right)$ be the function st: $f(x)= \begin{cases}1 & \text { if } x \text { is conj to } g \\ 0 & \text { other wise }\end{cases}$
Then since $x_{i}(g)=x_{i}(h)$ for all irred chars x_{i} of G, we have $f(h)=f(g)=1$, so h is conj to g.
Cor 3: For all $g \in G, g$ is con to g^{-1} iffy $x(g)$ is a real number for all chars x of G
4.2). Character Tables:

Let x_{1}, \ldots, x_{k} be the irred chars of G and let g_{1}, \ldots, g_{k} be representatives of the distinct conj. classes of G.
Defy 1: The $k \times k$ matrix whose ($(, j)$-entry is $x_{i}\left(g_{j}\right)$ is called the character table of G.

Note: Since the x_{i} are lin. indep, this matrix is invertible:
Then 1: i) Row orthogonality:

$$
\sum_{i=c}^{k} \frac{x_{r}\left(g_{i}\right) x_{s}\left(g_{i}-1\right)}{\left|z\left(g_{i}\right)\right|}=\delta_{r s} \quad\left(z\left(g_{i}\right)=\left\{z \in G \mid z_{i}=g_{i} z\right\}_{,}\right.
$$

ii) Column orthogo nality

$$
\sum_{i=1}^{k} \frac{x_{i}\left(g_{r}\right) x_{i}\left(g_{s^{-1}}\right)}{z z\left(g_{s}\right) l}=\delta_{r s}
$$

$\underline{P f:}$ i.) $\left.\delta_{r s}=\left\langle x_{r}, x_{s}\right\rangle=\frac{1}{|G|} \sum_{g \in G} x_{r}(g) x_{s}\left(g^{-1}\right)=\frac{1}{|G|} \sum_{i=1}^{k} x_{r}\left(g_{i}\right) x_{s}\left(g_{i}^{-1}\right) \right\rvert\, C_{G}\left(g_{j}\right)$ where ${ }^{C l} l_{G}\left(g_{i}\right)$ is the conjugacy class of g_{1} By the orbit --stabilizer theorem, $|G|=\left|\mathrm{Cl}_{G}\left(g_{i}\right)\right|\left|Z\left(g_{i}\right)\right|$.
ii) Let $f_{s} \in F_{c}(G, \mathbb{C})$ sit. $f_{s}\left(g_{r}\right)=\delta_{r s}$. Thea $f_{s}=\sum_{i=1}^{k}\left\langle f_{s}, x_{i}\right\rangle x_{i}$,
where

$$
\left\langle f_{s}, x_{i}\right\rangle=\frac{1}{|G|} \sum_{g \in G} f_{s}(g) x_{i}\left(g^{-1}\right)=\frac{1}{|G|}\left|C_{G}\left(g_{s}\right)\right| x_{i}\left(g_{s}^{-1}\right)=\frac{x_{i}\left(g_{s}^{-1}\right)}{\mid Z\left(g_{s} \mid\right.}
$$

This implies that

$$
\delta_{r s}=f_{s}\left(g_{r}\right)=\sum_{i=1}^{k} \frac{x_{i}\left(g_{s}^{-1}\right)}{\left|z\left(g_{s}\right)\right|} x_{i}\left(g_{r}\right) \text {. }
$$

Examples:

1) $G=C_{3}=\langle x\rangle$

g_{i}	e	x	x^{2}
$\left(z\left(q_{2}\right)\right.$	3	3	3
x_{1}	1	1	1
x_{2}	1	ω	ω^{2}
x_{3}	1	ω^{2}	ω

$$
x^{-1}=x^{2}
$$

Recall: $|G|=\sum \operatorname{dim}\left(V_{i}\right)^{2}$

$$
\begin{gathered}
\omega=e^{2 \pi / 3}, \omega^{3}=1 \\
x_{2}, x_{3}=\frac{1}{3}+\frac{1}{3} \omega^{2} \cdot \bar{\omega}+\frac{1}{3} \omega \omega^{2} \\
\\
=\frac{1+\omega^{2} \cdot \omega^{2}+\omega \omega}{3}=\frac{1+\omega+\omega^{2}}{3}
\end{gathered}
$$

2) $G=D_{3}=\left\langle r, f \mid r^{3}=e, f^{2}=e, f r=r^{-1} f\right\rangle$

g_{i}	e	r	f
$\mid C l\left(g_{i)}\right.$	1	2	3
$\mid z\left(g_{i}\right)$	6	3	2
x_{1}	1	1	1
x_{2}	1	1	-1
x_{3}	2	$x^{\prime \prime 1}$	$y=0$

$$
\begin{aligned}
& r \frac{f_{r} r^{-1}}{2}=r^{2} f \\
& r^{2} f_{r}^{-2}=r f
\end{aligned}
$$

$$
\begin{aligned}
& 1+1+2 x=0 \\
& 1-1+2 y=0 \\
& 1-1+x y=0
\end{aligned}
$$

Prop 1: Suppose x is a char of G and λ is a linear char of G. Then the product λx given by $\lambda x(g)=\lambda(g) x(g)$ is aloe a char.. If x is irred, then so is. λx.

Example 3:

$$
G=A_{4}
$$

g_{i}	id	$(12)(34)$	$(12$	$3)$	(1)
$\mid z_{1}\left(g_{i}\right)$	12	4	3	3	
x_{1}	1	1	1	1	
x_{2}	1	1	ω	ω^{2}	
x_{3}	1	1	ω^{2}	0	
x_{4}	3	-1	0	0	

where

$$
\begin{aligned}
& \omega^{3}=1 \text { ie } \omega=e^{2 \pi / 3} \\
& 1,2 \text { row orthog } \frac{1}{12}+\frac{x}{4}+\frac{\omega}{3}+\frac{\omega^{2}}{3} \\
& =\frac{1}{3}+\left(\frac{-1}{4}+\frac{x}{4}+\frac{\omega}{3}+\frac{\omega^{2}}{3}\right.
\end{aligned}
$$

4) $G=S_{4}$

g_{i}	e	(12)	$(12)(34)$	(123)	$\left(12^{3} 4\right)$
$\left\|l^{2}\left(g_{i}\right)\right\|$	1	6	3	8	6
$\left\|z\left(g_{i}\right)\right\|$	24	4	8	3	4
x_{1}	1	1	1	1	1
x_{2}	1	-1	1	1	-1
x_{3}	2	0	2	-1	0
x_{4}	3	1	-1	0	-1
x_{5}	3	-1	-1	0	1
$x_{2} x_{4}$			1	0	

Prop 2: Let N be a normal subgp of G, and let \tilde{x} be a char of G / N. Let $x: G \rightarrow \mathbb{C}$ be given by $x(g)=\widetilde{x}(g N)$. Then x is a character of G, and x and \widetilde{x} have the same degree, x is called the lift (or inflation) of \tilde{x} to G.

