From last time:
Throughout, we set $F=C$, $A=C[G]$ for finite gp G.
<u>Definition</u> Let G be a finite gp, and let $F(G, \mathbb{C})$ be the space of functions $G \xrightarrow{\longrightarrow} \mathbb{C}$. Define an inner product on $F(G, \mathbb{C})$ by:
$\langle F_1, F_2 \rangle = \frac{1}{ G } \sum_{g \in G} F_1(g) F_2(g)$
Then 1: Let U, V be irred C[G]-modules with chars 2, 7 resp.
$\langle \chi, \Psi \rangle = \begin{cases} 1 & \text{if } U \cong V \\ 0 & \text{if } U \notin V \end{cases}$
Prop 1: Let χ be the char of the regular repr. Then $\chi(e) = G $, and $\chi(a) = 0$ for $a \neq e$.
$\frac{V}{V_{i},v_{i},v_{i},v_{i}} = \frac{V_{i}}{V_{i}} + \frac{V_{i}}{V_{i}$
$\frac{\text{Cor I}}{\tilde{\chi}(q)} = I \text{ fix}(q)I - I \text{ is also a character of } Sn.$
$\frac{Pf: U = \langle v, +v_2 + \dots + v_n \rangle \text{ is a submodule of the permutation}}{\text{module } V_{\gamma} \text{ and } S_n \text{ acts trivially on } U.$
4.1) The Space of Class Functions on G
Throughout, G is finite, IF=C.
Let F _c (G, C) be the space of class functions on G.
$\frac{Prop \ 1:}{Pf:} \ divn \ F_c(G, \mathbb{C}) = \# \ of \ conj. \ classes \ of \ G. \\ \frac{Pf:}{Pf:} \ Lat \ x_1, \ldots, x_e \ te \ representatives \ of \ the \ conj. \ classes \ of \ G. \\ Then \ f_i \in F_c(G, \mathbb{C}) \ given \ ty \ .$

f: (x) = SI if x is carry to x; (O otherwise is a basis for $F_c(G, \mathbb{C})$. · · ① · · Now let $\chi_1, ..., \chi_k$ be a comptete set of distinct irred chars of G. $\frac{Prop \ 2}{Pf:} \text{ The } \chi_i \text{ are linearly independent} \\ \frac{Pf:}{O} = \langle \sum_{i=1}^{N} \chi_i, \chi_j \rangle = \sum_{i=1}^{N} \langle \chi_i, \chi_j \rangle = C_j$ • 🗇 • Lemmal: Let $f \in F_c(G, \mathbb{C})$ and p be an irred repr. of Gon an n-dim module V with char χ . Then $(Q: V \rightarrow V)$ quien by $(Q = \sum_{g \in G} f(g)p(g))$ equals λI_V , where $\lambda = \underline{IGI} < f, \overline{\chi} > \frac{1}{N}$ $\frac{PF}{p(g)} We \text{ observe } \forall g \in G:$ $p(g)^{-1}(l, p(g)) = p(g^{-1}) \sum_{x \in G} f(x) p(x) p(g) = \sum_{x \in G} f(x) p(g^{-1}xg)$ $= \sum_{\substack{y \in G \\ y \notin G}} f(gyg') p(y) = \sum_{\substack{y \notin G \\ y \notin G}} f(y) p(y) = Q.$ Thus, (p) p(g) = p(g)(Q), and hence (Q) is a $\mathbb{C}[G]$ -hom, and so by Schurb's Lemma, $Q = \lambda 1_V$ for some $\lambda \in \mathbb{C}$. In fact: $fr(Q) = n\lambda = \sum_{\alpha \in G} f(G)\chi(G) = |G| < f, \overline{\chi} > ...$ $\begin{array}{rcl} \hline \hline Rrop 3 & \mbox{Let } \chi & \mbox{te } \alpha & \mbox{char of } G. & \mbox{Then } \overline{\chi} & \mbox{is also } \alpha & \mbox{char } \\ \hline of G, & \mbox{and } \overline{\chi} & \mbox{is inved iff } \chi & \mbox{is inved } \\ \hline \hline PF & \mbox{If } P & \mbox{:G } \neg & \mbox{GL}(n, \mathbb{C}) & \mbox{is } \alpha & \mbox{repn }, & \mbox{then } so & \mbox{is } \sigma & \mbox{G}) = \overline{p(g)}. \\ \hline \hline & \mbox{Also }, & \mbox{$\langle \chi, \chi \rangle = <\chi, \chi \rangle}, & \mbox{so $\langle \chi, \chi \rangle = 1$ iff $\langle \chi, \chi \rangle = 1$.} \\ \hline \end{array}$ Lemma 2: IF $f \in F_c(G, C)$ and $\langle f, \chi_i \rangle = 0$ $\forall i$, then f = 0. <u>PF</u>: Since $\{\chi_1, \dots, \chi_k\} = \{\chi_1, \dots, \chi_k\}$, we have $\langle F, \chi_i \rangle = 0$ $\forall i$. Let $\mathcal{O}_p = \sum f(q)p(q)$. IF p is irred, then by Lemma I, $\mathcal{O}_p = 0$. IF p is red, then \mathcal{O}_p acts by 0 on every irred submodule, $\mathcal{O}_{i} = 0$ and so again Qp=0. Now let p be the regular repr. Then for hEG, $(Q_p(h) = \sum f(q)gh = 0)$

Since $\{gh \mid g \in G\} = G$ forms a basis for the regular module, we have F(g) = O $\forall g \in G$. $\begin{array}{rcl} \hline Prop & 4: & \text{The } \chi_i & \text{span} & F_c(G, \mathbb{C}) \\ \hline Pf: & \text{Let } f \in F_c(G, \mathbb{C}) & \text{Let } \widehat{f} = f - \sum_i \langle f, \chi_i \rangle \chi_i & \text{Then} \\ & \langle f, \chi_j \rangle = \langle f, \chi_j \rangle - \sum_i \langle f, \chi_i \rangle \langle \chi_i, \chi_j \rangle = 0 & \forall j \\ & \text{and so } \widehat{f} = 0 & \text{Thus}, & f = \sum_i \langle f, \chi_i \rangle \chi_i & \ddots \end{array}$ <u>Cor 1</u>: The χ_i form a tasis for $F_c(G, \mathbb{C})$, and the number of distinct irred chars equals the number of distinct conjugacy classes. Cor 2: Suppose $g, h \in G$. Then g is conjust of h iff $\chi(g) = \chi(h)$ for all characters χ of G. PF:(=)Let f ∈ Fc(G, O) be the function s.t. f(x) = SI if x is conj to g [O otherwise. Then since $\chi_i(q) = \chi_i(h)$ for all irred chars χ_i of G, we have $f(h) = f(q_i) = 1$, so h is carry to g. Cor 3: For all gEG, g is conj to g⁻¹ iff X(g) is a real number for all chars X of G. 4.2) Character Tables: Let X1, ..., Xk be the irred chars of G and let g1,..., gk be representatives of the distinct conj. classes of G. <u>Defn 1</u>: The kxk matrix whose (i, j)-entry is $\chi_i(g_j)$ is called the <u>character table</u> of G. Note: Since the X: are lin. indep, this matrix is invertible. Thm 1: i) Row orthogonality: (ZGi) = {ZEG| ZGi = giZG, called the centraliser of gi) $\sum_{i=1}^{k} \frac{\chi_r(\underline{G}_i) \chi_s(\underline{G}_i^{-1})}{1 Z(\underline{G}_i)}$ ii) Column orthogo hality: $\sum_{i=1}^{\infty} \frac{\chi_i(q_r) \chi_i(q_{s-1})}{|Z(q_s)|} = \delta_{rs}$

$\underline{Pf:} i) S_{rs} = \langle \chi_{r}, \chi_{s} \rangle = \frac{1}{16!} \sum_{g \in G} \chi_{r}(g) \chi_{s}(g^{-1}) = \frac{1}{16!} \sum_{i=1}^{k} \chi_{r}(g_{i}) \chi_{s}(g_{i}^{-1}) \mathcal{O}_{G}(g_{i}) \rangle$
where $Cl_{G}(q_{i})$ is the conjugacy class of q_{i} . By the orbit - stabilizer theorem, $IGI = Cl_{G}(q_{i}) Z(q_{i}) $.
ii) Let $f_s \in F_c(G, \mathbb{C})$ s.t. $f_s(g_r) = S_{rs}$. Then $f_s = \sum_{i=1}^{k} \langle f_s, \chi_i \rangle \chi_i$,
where $\langle F_s, \chi_i \rangle = \frac{1}{ G } \sum_{\substack{g \in G \\ g \in G}} f_s(g) \chi_i(g^{-i}) = \frac{1}{ G } \mathcal{O}_{G}(g_s) \chi_i(g_s^{-i}) = \frac{\chi_i(g_s^{-i})}{ Z(g_s) }$ This implies that $\delta_{rs} = f_s(g_r) = \sum_{i=1}^{k} \frac{\chi_i(g_s^{-i})}{ Z(g_s) } \chi_i(g_r).$
<u>Examples</u>
i) $G_1 = C_3 = \langle x \rangle$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
χ_{1}
$\chi_2 = 1 \omega \omega^2 \qquad \omega = e^{2\pi i \gamma_3} \omega^3 = 1.$
$\chi_3 \mid 1 \omega^2 \omega \qquad \chi_2, \chi_3 : \frac{1}{3} + \frac{1}{3} \omega^2 \cdot \overline{\omega} + \frac{1}{3} \omega \overline{\omega^2}$
Recall: $[G] = 2 \dim(V_i)^2$ $= 1 + \omega + \omega \omega$ 3
2) $G = D_3 = \langle r, f r^3 = e, f^2 = e, fr = r^{-1}f \rangle$
Qi C r f Cl(qi) 1 2 3 Z(qi) 6 3 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$A_3 \mid \mathcal{A} \mathcal{A} \mathcal{Y}^{}$

<u>Prop 1:</u>	Suppose χ char of G . $\lambda \chi(g) = \lambda (g) g$ then so is λ	is a char o Then the P r(g) is also r.	f G and product 7 a char.	- <i>is</i> a <i>x</i> given -F <i>x</i> i	linear by s irred,
Example	<u>3:</u>				
$G = A_{y}$			• • • •		
gi id [<u>Z(gi)] 12</u>	(12)(34) 4	(123) (132 <u> </u>		· · · · · ·	· · · · · · · ·
$\chi_1 = 1$	 	ι ω ω ²	ເປ ພ ³	nere	ω = e ^{2πγ3}
$\begin{array}{c c} \chi_{3} & I \\ \chi_{4} & 3 \end{array}$		ω ² ω Ο Ο	. 1,2	row orthog:	$\frac{1}{12} + \frac{1}{4} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3}$
• • • • •	• • • • • •		• • • •	· · · · · · ·	$\frac{1}{3} + \begin{bmatrix} -1 \\ 4 \end{bmatrix} + \frac{1}{4} + \frac{1}{3} + \frac{1}{3}$
4) (S = S			• • • •		
		(1,2)(3,1)			
102 (gi)1 12(gi)1	1 6 24 4	3	8	6 4	· · · · · · · ·
		· · · · · · ·		· · · · · ·	
L.		.			· · · · · · · ·
22					· · · · · · · ·
×3.		-1			· · · · · · · ·
Ky		· · · · · · · · · · · · · · · · · · ·	\sim	· · · · · ·	· · · · · · · ·
χς « 7, χ		· · · · · · · · · ·		· · l · · · ·	· · · · · · · ·
Ifix(a)1-1:	3		\circ		· · · · · · · ·
			• • •		

•	P			<u>כ</u> :	•	j)	•	N)	•	He	•	2		V V	va	l	Cu/	ب	D.	of	•	Ġ	0		ß	•		•	•	•	•	•
•	•		•	0	ົ່ງ	Ĭ.	be	>.	a	. (h	ar	.0	£	Ş	Ń	. l	لم	fJ	T. 2	2:-	Ġ		? > (C	t.	e	يد ب	•	•	•	•	•
0	۰	0	•	۰	.q	L I.ve	en	•	by	\ ` •	X ⁽	Q)	Ē	Ĩ	$\frac{1}{2}$	N)		.he	n	\cdot	L.	21	a	.C	ha	<i>r</i> a	d	Y.	۰	۰	۰	0
۰	۰	۰	۰	۰	of		G	۱	ar	2	. j	Ľ.	anc 1	J.	Ã	. Ø t	هما ۲	ure	2.	th	و ا	Sa	me	d	leg	re	2	·. 1	•	G	۰	۰	۰
•	•	•	•	•	X	•	15	•	CA	JUL.	100	•	ΓU	L	•	up		•	0	Υ.		<u>-</u> (a		<u>~</u>)	07		X	. Г	J	a	' 。	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	۰	0	۰	۰	0	۰	۰	0	۰	۰	۰	٠	۰	۰	۰	۰	٠	۰	۰	۰	٠	۰	۰	•	٠	•	٠	•	۰	۰	۰	۰	0
0	۰	•	٠	۰	0	۰	۰	•	٠	۰	٠	٠	•	۰	۰	٠	٠	0	٠	٠	٠	٠	۰	•	٠	•	٠	•	٠	٠	٠	٠	0
0	۰	۰	۰	۰	۰	0	۰	•	۰	۰	٥	۰	۰	٥	۰	۰	۰	۰	۰	۰	۰	۰	۰	٠	•	•	۰	۰	۰	۰	٥	۰	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	۰	۰	•	۰	•	٠	۰	۰	٠	۰	٠	٠	۰	۰	۰	٠	٠	•	٠	٠	٠	•	۰	•	٠	•	٠	•	•	•	•	•	٠
۰	۰	٠	۰	۰	٠	۰	٠	0	۰	۰	۰	۰	٠	۰	٠	۰	۰	٠	۰	۰	۰	۰	۰	٠	•	•	۰	٠	۰	۰	•	۰	۰
•	۰	•	٠	۰	۰	۰	۰	•	٠	۰	٠	٠	۰	۰	۰	٠	٠	•	٠	٠	٠	٠	۰	•	٠	•	٠	•	٠	٠	٠	٠	۰
•	•	•	•	•	•	•	•	•	۰	•	•	•	•	۰	•	۰	•	•	۰	۰	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	۰	۰	•	۰	۰	٠	۰	٠	٠	۰	٠	٠	۰	٠	۰	٠	٠	۰	٠	٠	٠	•	۰	•	•	•	٠	•	•	•	•	•	٠
٠	٠	٠	۰	٠	٠	٠	٠	٠	۰	٠	۰	٠	٠	۰	٠	۰	٠	٠	۰	۰	٠	۰	٠	٠	۰	•	٠	•	۰	۰	٠	۰	۰
۰	۰	۰	•	۰	۰	٠	۰	0	٠	۰	٠	٠	۰	۰	۰	٠	٠	۰	٠	٠	٠	٠	۰	•	٠	•	٠	•	٠	٠	٠	٠	۰
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	٠	•	۰	٠	٠	•	•	0	۰	•	٠	٠	٠	٠	٠	۰	٠	٠	۰	۰	٠	۰	•	٠	۰	•	٠	•	٠	٠	٠	۰	0
•	۰	•	•	۰	•	۰	۰	۰	٠	۰	٠	٠	•	۰	۰	٠	٠	•	٠	٠	٠	•	۰	•	٠	•	٠	•	•	•	•	•	۰
0	۰	۰	٠	۰	۰	٠	۰	•	٠	۰	٠	۰	۰	٠	۰	۰	۰	•	۰	۰	۰	٠	٠	•	٠	•	۰	۰	٠	٠	٠	٠	0
۰	۰	0	۰	۰	0	۰	۰	۰	۰	۰	۰	۰	•	۰	۰	۰	۰	0	۰	۰	۰	۰	۰	•	۰	•	٠	•	۰	۰	۰	۰	۰
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	٠	٠	۰	٠	٠	٠	٠	•	۰	٠	۰	٠	٠	۰	٠	۰	٠	٠	۰	۰	٠	۰	٠	٠	۰	•	٠	•	۰	۰	۰	۰	٠
0	۰	0	٠	۰	0	٠	۰	0	٠	۰	٠	٠	•	٠	۰	٠	٠	0	٠	٠	٠	٠	۰	•	٠	•	٠	•	٠	٠	٠	٠	۰
•	۰	٠	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	٠	•	•	۰	۰	۰	۰	0	۰	۰
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	۰	٠	٠	۰	۰	•	۰	۰	۰	۰	0	۰	٠	۰	۰	۰	۰	٠	۰	۰	۰	۰	۰	٠	0	•	٠	۰	۰	۰	0	۰	٠
۰	۰	۰	۰	۰	۰	٠	۰	۰	٠	۰	٠	۰	۰	٠	۰	۰	۰	۰	٠	۰	۰	۰	٠	۰	٠	•	٠	٠	٠	٠	٠	۰	۰
•	۰	۰	۰	۰	۰	۰	۰	0	٠	۰	٠	٠	۰	۰	۰	٠	٠	۰	۰	٠	٠	٠	۰	۰	٠	•	٠	•	٠	٠	٠	٠	۰
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	0	۰	٠	0	•	•	•	٠	۰	•	۰	۰	•	۰	٠	۰	۰	۰	٠	۰	•	•	•	•	•	٠	•	•	•	•	•	•
۰	•	0	۰	•	۰	•	•	•	۰	•	٠	۰	۰	•	۰	•	۰	۰	•	•	۰	•	۰	٠	•	•	٠	•	•	•	۰	٠	•