From last time:
Cor I: Let V be an A-mod with $V=U_{1} \oplus \cdots \oplus U_{r}$, where each U_{i} is an irred submodule: Let w be any irred A-mod: Then $\operatorname{dim}\left(\operatorname{Hom}_{A}(v, w)\right)$ and $\operatorname{dim}\left(\operatorname{Hom}_{A}(W, V)\right)$ both equal the number of submodules U_{i} st. $U_{i} \cong W$

Prop 4: If U is an A -module, then $\operatorname{dim}\left(\operatorname{Hom}_{A}(A, U)\right)=\operatorname{dim} U$
PF: Let $d=\operatorname{dim} u_{\text {. Let }} u_{1}, u_{2}, \ldots, u_{d}$ be a basis for U. Define $\varphi_{i}: A \rightarrow U$, by $Q_{i}(r)=r u_{i}$. Then $\forall r, s \in A$,

$$
Q_{i}(r s)=(r s) u_{i}=r\left(s u_{i}\right)=r Q_{i}(s) \text {, so } Q_{i} \in \operatorname{Hom}_{A}(A, U)
$$

We wish to show that $\varphi_{1}, \ldots, Q_{d}$ is a basis for $\operatorname{Hom}_{A}(A, U)$. Let $\psi \in \operatorname{Hom}_{A}(A, U)$. Then:
$\psi(1)=\lambda_{1} u_{1}+\cdots+\lambda_{d} u_{d}$. for some $\lambda_{i} \in \mathbb{F}$.
Since ψ is an A-homomorphism

$$
\begin{aligned}
\psi(r)=\psi(r \mid 1)=r \psi(1) & =\lambda_{1}\left(r u_{1}\right)+\lambda_{2}\left(r u_{2}\right)+\cdots+\lambda_{d}\left(r u_{d}\right) \\
& =\lambda_{1} \varphi_{1}(r)+\lambda_{2} Q_{2}(r)+\cdots+\lambda_{d} Q_{d}(r) .
\end{aligned}
$$

Thus, the Q_{i} span $H_{o m}(A, U)$
Now suppose $\sum \lambda_{i} Q_{i}=0$ for some $\lambda_{i} \in \mathbb{F}$. Then evaluating. both sades at. 1 gives us. $\sum \lambda_{i} u_{i}=0$, so $\lambda_{i}=0 . \forall i$. So the Q_{i} are lin. indep, and hence a basis. Thus, $\operatorname{dim}\left(\operatorname{Hom}_{A}(A, U)\right)=\operatorname{dim} U$.

Then 1: Suppose $A=U_{1} \oplus \cdots \oplus U_{r}$, where each U_{i} is irred If U is any irred A-module, then the number of A-modules. U_{i}. with $U_{i} \cong U$ is equal to $\operatorname{dim} U$.
Pf: By Prop $4, \operatorname{dim} U=\operatorname{dim}\left(\operatorname{Hom}_{A}(A, U)\right)$, and by Cor 1 to Prop 3, $\left.\operatorname{dim}^{(} H^{\prime} m_{A}(A, U)\right)$ equals the number of submods U_{i} isom to U.

The 2: Let V_{1}, \ldots, V_{k} form a complete set of non-isomophic irred $\mathbb{F}[G]$ modules. Then $|G|=\sum_{i=1}^{k}\left(\operatorname{dim} V_{i}\right)^{2}$.

Example: Let G be a gp of order 8 . Then the possibilities for dimensions di of irred modules are $1,1,1,1,1,1,1,1$ (abelian)
$1,1,1,1,2$ (nonabelian)

Note: For all algebras $\mathbb{F}[G]$, we can define a rep on a 1 -dim rect Sp. V (so $V \cong \mathbb{F}$) given by $G \times V \rightarrow V$.
$g v \mapsto v$
This is irred (since V has dim 1), and is called the trivial rep, corr. the trivial module.
3.1) Characters:

For this section, assume \mathbb{F} is alg closed.
Defu 1: Let A be an alg with rep p on a fin dim. vet $S P . V$. Then the character of $p(o r$ of V) is the linear map $X: A \rightarrow \overrightarrow{\mathbb{F}}$ given by

$$
X(a)=\operatorname{tr}(p(a))
$$

For rephs of finite $g p s$, we take the char to be $X: G \rightarrow \mathbb{F}$
Recall:

$$
\begin{aligned}
& \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B) \\
& \operatorname{tr}(A B)=\operatorname{tr}(B A) \\
& \Rightarrow \operatorname{tr}\left(B A B^{-1}\right)=\operatorname{tr}(A)
\end{aligned}
$$

Defy 2: A function $x: G \rightarrow \mathbb{F}$ satisfying $x\left(s t s^{-1}\right)=x(t) \forall s, t \in G$ is called a class function. [constant on coninggacy classes]
Deft 3:- We say x is a char of G if x is the char of some rept of G.

- We cay x is irred if. x is the char of an irred repp
- A character of a 1-dim rep is called a linear char.

Prop 1: Let x be the char of a repp p of G on V
Then for $s, t \in G$:
i) $X(e)=\operatorname{dim} V$. [This is called the degree of V]
ii) $x\left(s t s^{-1}\right)=x(t)$.

Prop 2: If V and W are isom. A-modules, then they have the same character.

Idea: If $T: V \rightarrow W$ is an isom, $P: A \rightarrow E n d(V), \sigma: A \rightarrow \operatorname{End}(W)$, then $\sigma(a)=T \circ p(a) \cdot T^{-1} \quad \forall a \in A$

Prop 3: Let $\mathbb{F}=\mathbb{C}_{1}$ let x te a char of G, let $g \in G$ with order .m. Then
i) $x(g)$ is a sum of $m^{\text {th }}$ roots of unity
ii) $x\left(g^{-1}\right)=\overline{x(g)}$

Pf: i) Let $H=\langle g\rangle$. Then H is a cyclic $g p$ and any $\mathbb{C}[G]$ - module. V is also a $\mathbb{C}[H]$-module. By Maschke's Thu, we can decompose $V=U_{1} \oplus \ldots \oplus U_{n}$ (ivied $\left.\mathbb{C C H}\right]$-mods) and by the corollary to Schur's Lemma, each U_{i} is 1-dim (because H is abelian): Taking $u_{i} \in U_{i}$ (nonzero), we have u_{1}, \ldots, u_{n} is a basis \mathcal{H} of V, and $[g]_{\beta}$ is a diagonal matrix. Some $g^{m}=e$, for each $i, g u_{i}=\omega_{i} u_{i}$ where each $\omega_{i} \in \mathbb{C}$ is an $m^{\text {th }}$ root of unity. The trace of [g] 3 , is the of the wi.
ii) $\left[g^{-1}\right]_{B}=\operatorname{diag}\left\{\omega_{1}^{-1}, \ldots, \omega_{n}^{-1}\right\}=\operatorname{dag}\left\{\bar{\omega}_{1}, \bar{\omega}_{2}, \ldots, \bar{\omega}_{n}\right\}$
3.2) Inner products of characters

Throughout, we set $\mathbb{F}=\mathbb{C}, A=\mathbb{C}[G]$ for finite $g p G$
Defu. 1: Let G be a finite gp, and let $F(G, \mathbb{C})$ be the space of functions $G \xrightarrow{ } \mathbb{C}$. Define an inner product on $F(G, \mathbb{C})$ by:

$$
\left\langle f_{1}, f_{2}\right\rangle=\frac{1}{|G|} \sum_{g \in G} f_{1}(g) \overline{f_{2}(g)}
$$

Prop 1: Let G te a fin gp and let ϕ, ψ be chars of G. Then $\langle\phi, \psi\rangle$ is a real number

$$
\begin{aligned}
\text { Pf: } \left.\begin{array}{rl}
\langle\phi, \psi\rangle & =\langle\psi, \phi\rangle(\text { by cong-sym }) \\
& =\frac{1}{|G|} \sum_{g \in G} \psi(g) \overline{\phi(g)} \\
& =\frac{1}{|G|} \sum_{g \in G} \psi(g) \phi\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \psi\left(g^{-1}\right) \phi(g)=\langle\phi, \psi\rangle
\end{array}\right) .
\end{aligned}
$$

Then $1 \vdots$ Let U, V be irred $\mathbb{C}[G]$-modules with chars X, ψ resp:
Then.

$$
\langle x, \psi\rangle=\left\{\begin{array}{ll}
1 & \text { if } u \cong V \\
0 & \text { if } u \not \approx V
\end{array}[x=\psi \text { in this }]\right.
$$

To. prove this, we first write a lemma and corollary.
Lemena 1: Let U, V be irred $\mathbb{C}[G]$-mods wi reps p, σ resp. Let $T: V \rightarrow U$ be a lin map. Then $T: V \rightarrow U$ given by:

$$
\widetilde{T}=\frac{1}{|G|} \sum_{g \in G} p\left(g^{-1}\right) \cdot T \cdot \sigma(g)
$$

is a $\mathbb{C}[G]$-ham. Further more,
i) if $U \neq V, \widetilde{T}$ is the zero map.
ii) if $U \cong V_{p},=\sigma, \widetilde{T}=\lambda I_{n} \quad\left(\lambda=\frac{1}{n} \operatorname{tr}(T)\right)$

Cor 1: Let $p(g)=\left[r_{i j}(g)\right], \sigma(g)=\left[s_{i j}(g)\right]$ and $T=\left[x_{i j}\right]$. Then

$$
\widetilde{T}_{i l}=\frac{1}{|G|} \sum_{g \in G} \sum_{j=1}^{m} \sum_{k=1}^{n} r_{i j}\left(g^{-1}\right) x_{j k} s_{k l}(g)
$$

so if $U \nsubseteq V$, then

$$
\begin{aligned}
& \text { so if } U \not \equiv V \text {, then } \\
& \frac{1}{|G|} \sum_{i g \in G} r_{i j}\left(g^{-1}\right) s_{k l}(g)=0 \quad \forall i, j, k_{r} l \\
& \text { if } \mid 1 \simeq V=\sigma \text { then: }
\end{aligned}
$$

and if $U \cong V, p=\sigma$, then:

$$
\frac{1}{|G|} \sum_{g \in G} r_{i j}\left(g^{-1}\right)^{\prime} r_{k Q}(g)=\frac{\delta_{i Q} \delta_{j k}}{h}
$$

Pf of. Then 1:

$$
\begin{aligned}
& \langle x, x\rangle=\frac{1}{|G|} \sum_{\text {IF }} x(g) x\left(g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G}\left(\sum_{i} r_{i i}(g)\right)\left(\sum_{i j} r_{j j}\left(g^{-1}\right)\right. \\
& =\sum_{i=1}^{n} \sum_{j=1}^{i n} \frac{\delta_{i j}}{n}=1 \\
& \langle x, \Psi\rangle=\frac{1}{|G|} \sum_{g \in G}\left(\sum_{i=1}^{m} u \neq V r_{i i}(g)\left(\sum_{j=1}^{n} s_{j j}\left(g^{-1}\right)\right)=0\right.
\end{aligned}
$$

Thu 2: Let V be a $\mathbb{C}[G]$-mod with char ψ st $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r}$, where each V_{i} is irred. Let W. be an irred $\mathbb{C}[G]$-mod with char. X. Then $\langle\psi, x\rangle$ is an integer equal to the number of V_{i} ism to W.

PF: Let ψ_{i} be the char of V_{i}. Then $\psi=\psi_{1}+\cdots+\psi_{r}$, so $\langle\psi, x\rangle=\left\langle\sum \psi_{i}, x\right\rangle=\sum\left\langle\psi_{i}, x\right\rangle$.
But. ψ_{i}, X are irred chars, and $\left\langle\psi_{i,}, X\right\rangle=1$ if $V_{i} \cong W$ (and O otherwise), so $\langle\psi, \mathcal{X}\rangle$ equals the number of V_{i} som to W.

Cor 2 Let u and v te $\mathbb{C}[G]$ mods of chars x, ψ resp. Then $u \cong V$ iff. $x=\psi$.

PF: If $u \cong V$, then $x=\psi$ by $\operatorname{Sec} 3.1$, Prop 2 .
If $U . \neq V$, then $x \neq \psi$. if U and V are irred (since. $\langle x, \psi\rangle=0$ in this case, but $\langle x, x\rangle=1$). If. U and V are not both irred, then there exists an irred mod W with char ξ that appears with different multiplicity in U and V. Then $\langle x, \xi\rangle \neq\langle\psi, \xi\rangle$, so $x \neq \psi$
Thu 3: Let x be a char of G Then $\langle x, x\rangle=1$ iff x is irred
PF: (\Leftarrow) By Them 1
$(\Rightarrow:$) Suppose $\langle x, x\rangle=1$ but x is the char of a reducible module V.. Then $V=V_{1} \oplus \cdots \oplus V_{r}$ for some irred submods V_{i}. Let x_{i} be the char of V_{i} Then $x=x_{1}+\cdots+x_{r}$ and so

$$
\langle x, x\rangle=\left\langle\sum_{i=1}^{r} x_{i}, \sum_{i=1}^{r} x_{i}\right\rangle \geqslant r>1,
$$

which is a contradiction.

Example: Char x of regular $\mathbb{C}[G]$-module

$$
x(e)=|G|
$$

Let $g \in G$ with $g \neq e$
$x(g)$?
$g \cdot h \neq h \quad$ for any $h \in G$.

$$
p(g)=\left[\begin{array}{llll}
0 & & & \\
0 & 0 & 0 & \\
\vdots & & \ddots & \\
\vdots & & \ddots & 0
\end{array}\right]
$$

\rightarrow all diag permutation matrix

$$
x(g)=0 \quad \forall g \in G \backslash\{e\}
$$

