From last time: Cor 1: Let V be an A-mod with $V = U, \oplus \cdots \oplus U_r$, where each U; is an irred submodule. Let W be any irred A -mod. Then $\dim(Hom_{A}(V,W))$ and $\dim(Hom_{A}(W,V))$ both equal the number of putmodules Ui s.t. $U_{i} \cong W$. Prop 4: IF U is an A-module, then dim (Hom_A(A, U)) = dim U. PF: Let d= dim U. Let u, uz, ..., ud be a basis for U. Define Q: A -> U by Qi(r)=ru; Then Vr, SEA, $Q_i(rs) = (rs)u_i = r(su_i) = r(Q_i(s), so Q_i \in Hom_A(A, U))$ We wish to show that Q, , ..., Qd is a basis for HomA (A, U). Let $\Psi \in Hom_A(A, U)$. Then: $\Psi(1) = \lambda_1 u_1 + \cdots + \lambda_d u_d$ for some $\lambda_i \in \mathbb{F}$. Since 4 is an A-homomorphism: $\Psi(r) = \Psi(r_1) = r \Psi(1) = \lambda_1(r_u, 1 + \lambda_2(r_u, 2) + \dots + \lambda_d(r_u, d)$ $= \lambda_1 (Q_1(r) + \lambda_2 (Q_2(r) + \dots + \lambda_d (Q_d(r))))$ Thus, the Q; span Homa (A,U). Now suppose $\sum \lambda_i (Q_i = 0 \text{ for some } \lambda_i \in \mathbb{F}$. Then evaluating both sides at I quies us $\sum \lambda_i (u_i = 0, so \lambda_i = 0 \forall i)$. So the Qi are lin indep, and hence a basis. Thus, dim (HomA (A,U)) = dim U. Then 1: Suppose $A = U_1 \oplus \cdots \oplus U_r$, where each Ui is irred. IF U is any irred A-module, then the number of A-modules Ui with Ui \cong U is equal to dim U. By Prop 4, dim U = dim (Hom_A (A,U)), and ty Gr 1 to Prop 3, dim (Hom_A (A,U)) equals the number of submods :PF: Ui ison to U. Then 2: Let V_1, \ldots, V_k form a complete set of non-isomorphic irred [FG] modules. Then $|G| = \sum_{i=1}^{k} (\dim V_i)^2$. Example: Let G be a gp of order 8. Then the possibilities for dimensions d; of irred modules are: 1, 1, 1, 1, 1, 1, 1, 1 (abelian) 1, 1, 1, 1, 2 (nonabelian)

Note: For all algebras $FIGT$, we can define a reprior a 1-dim vect sp V (so $V \cong F$) given by $G \times V \longrightarrow V$ $g \vee \to V$. This is irred (since V has dim 1), and is called the
This is irred (since V has dim 1), and is called the trivial repn, corr. The trivial module,
<u>3 D. Characters:</u>
For this section, assume IF is alg. closed.
<u>Definition</u> Let A be an alg. with repriper point a findim. vect sp V. Then the <u>character</u> of p (or of V) is the linear map $\chi: A \rightarrow F$ given by $\chi(\alpha) = tr(p(\alpha)).$
For repus of finite gps, we take the char to be $\chi: G \rightarrow IF$.
$\frac{\text{Recall:}}{\text{tr}(A+B)} = \text{tr}(A) + \text{tr}(B) .$ tr(AB) = tr(BA) . $\Rightarrow \text{tr}(BAB') = \text{tr}(A) *$
<u>Defn 2</u> : A function $\chi: G \rightarrow F$ satisfying $\chi(sts') = \chi(t) \forall s, t \in G$ is called a <u>class function</u> . [constant on conjugacy classes]
Defin 3: • We say x is a <u>char of G</u> if x is the char of some repriof G.
• We say X is <u>irred</u> if x is the char of an irred repn • A character of a I-duin repn is called a <u>linear char</u> .
Prop 1: Let χ te the char of a repu p of G on V. Then for s,t EG: i) $\chi(e) = \dim V$ [This is called the degree of V] ii) $\chi(sts') = \chi(t)$.
<u>Prop 2</u> : IF V and W are ison A-modules, then they have the same character.
Idea: IF T: V > W is an ison, p: A > End(V), o: A > End(W) then o(a) = Top(a) o T' VaEA.

Prop 3: Let IF=C, let X te a char of G, let g e G with order m. Then: i) $\chi(q)$ is a sum of mth roots of unity. ii) $\chi(q') = \chi(q)$. <u>PF:</u> i) Let H = <q>. Then H is a cyclic gp and any C[G] - module V is also a C[H] - module. By Maschke's Thum, we can decompose V = U, @ ... @ Un (ivred C[H]-mods) and by the corollary to Schur's Lemma, each lli is 1-dim (because H is abelian). Taking u: Elli (nonyero), we have $u_1, ..., u_n$ is a basis B of V, and $[a]_{B}$ is a diagonal matrix. Some $g^{m} = e_{j}$, for each i, $gu_{i} = \omega_{i}u_{i}$ where each $\omega_{i} \in \mathbb{C}$ is an mth root of unity. The trace of $[g]_{B}$ is the of the w ii) $\left[g^{\overline{1}}\right]_{\overline{B}} = diag \left\{\omega_{1}^{-1}, \ldots, \omega_{n}^{-1}\right\} = diag \left\{\overline{\omega}_{1}, \overline{\omega}_{2}, \ldots, \overline{\omega}_{n}\right\}$ 3.2) Inner products of characters Throughout, we set F=C, A=C[G] for finite gp G. <u>Defn 1</u> Let G be a finite gp, and let F(G, C) be the space of functions G $\xrightarrow{\longrightarrow}$ C. Define an inner product on F(G, C) by ' $\langle F_1, F_2 \rangle = \frac{1}{|G|} \sum_{q \in G} f_1(q) \overline{f_2(q)}.$ Prop 1: Let G be a fin app and let \$\$, \$\$ be chars of G. Then <\$\$, \$\$? is a real number. $\underline{PF}: \langle \phi, \Psi \rangle = \langle \Psi, \phi \rangle (by \operatorname{conj-sym})$ $= \frac{1}{1G1} \sum_{g \in G} \Psi(g) \overline{\Phi(g)}$ $= \frac{1}{|G|} \sum_{q \in G} \psi(q) \phi(g')$ $\frac{1}{|G|} \sum_{q \in G} \psi(q^{-1}) \phi(q) = \langle \phi, \psi \rangle$

Then I: Let U, V be irred C[G]-modules with chars 2, 7 resp. Then $\langle \chi, \Psi \rangle = \begin{cases} 1 & \text{if } U \cong V \\ 0 & \text{if } U \notin V \end{cases}$ To prove this, we first write a lemma and corollary. Lemma !: Let U, V be irred C[G] - mods 7 repris p, or resp. Let T: V -> U be a lin map. Then 7: V-> U gwen by ? $= \frac{1}{|G|} \sum_{g \in G} p(g^{-1}) \circ T \circ \sigma(g) .$ is a CGJ-hom Furthermore, i) if U≇ V, T is the zero map ii) if U≌ V,p=0, T = λ In (λ= tr(T)) $(\underline{\sigma r \ l:} \ hat \ p(g) = [r_{ij}(g)], \ \sigma(g) = [s_{ij}(g)] \ and \ T = [x_{ij}]. Then$ $\widetilde{T}_{i\ell} = \frac{1}{|G|} \sum_{g \in G} \sum_{j=1}^{m} \sum_{k=i}^{n} r_{ij} (g^{-i}) \chi_{jk} S_{k\ell}(g) ,$ so if U ∉V, then $\frac{1}{|G|} \sum_{q \in G} r_{ij} (q^{-i}) s_{kl}(q) = 0 \quad \forall i, j, k, l$ and if $U \cong V$, $p = \sigma$, then $\frac{1}{|G_i|} \sum_{g \in G} r_{ij}(g^{-1}) r_{kl}(g) = \frac{S_{il}S_{jk}}{n}$ $\frac{PF \text{ of Thm } 1}{\langle \chi, \chi \rangle} = \frac{1}{|G|} \sum_{q \in G} \chi(q) \chi(q^{-1}) = \frac{1}{|G|} \sum_{q \in G} \left(\sum_{i} r_{ii}(q^{2}) \right) \left(\sum_{i} r_{ij}(q^{-1}) \right)$ $=\sum_{i=1}^{n}\sum_{j=1}^$ $IF_{\chi \neq \psi} (and U \neq V), \text{ then} \\ \langle \chi, \psi \rangle = \frac{1}{161} \sum_{g \in G} \left(\sum_{i=1}^{m} r_{ii}(g) \left(\sum_{j=1}^{m} S_{ij}(g^{-i}) \right) \right) = 0,$ Then 2: Let V be a CGJ-mod with char 7 st V=V, @V2@.... @Vr, where each V; is irred. Let W te an irred CEGI-mod with char X. Then (4, 2) is an integer equal to the number of Vi ison to W.

$\begin{array}{llllllllllllllllllllllllllllllllllll$
Cor 2: Let U and V te C[G]-mods 7 chars χ , γ resp. Then U \cong V iff $\chi = \gamma$.
<u>PF</u> : IF $U \cong V$, then $\chi = \Psi$ by Sec. 3.1, Prop 2. IF $U \notin V$, then $\chi \neq \Psi$ if U and V are irred (since $\langle \chi, \Psi \rangle = 0$ in this case, but $\langle \chi, \chi \rangle = 1$). IF U and V are not both irred, then there exists an irred mod W with char ξ that appears with different multiplicity in U and V. Then $\langle \chi, \xi \rangle \neq \langle \Psi, \xi \rangle$, so $\chi \notin \Psi$.
Thus 3: Let χ be a char of G. Then $\langle \chi, \chi \rangle = 1$ iff χ is irred.
$\frac{PF:}{(\neq:)} \begin{array}{l} & \text{By Thm 1.} \\ (\Rightarrow:) \end{array} \begin{array}{l} & \text{Suppose } (\chi,\chi) = 1 \end{array} \begin{array}{l} & \text{tut } \chi \end{array} \begin{array}{l} & \text{is the char of} \\ & \text{a reducible module } V \end{array} \begin{array}{l} & \text{Then } V = V_1 \oplus \cdots \oplus V_r \end{array} \begin{array}{l} & \text{for} \\ & \text{some irred submods } V_i \end{array} \begin{array}{l} & \text{het } \chi_i \end{array} \begin{array}{l} & \text{be the char of } V_i \end{array} \end{array}$
$\langle \chi, \chi \rangle = \langle \sum_{i=1}^{r} \chi_{i}, \sum_{i=1}^{r} \chi_{i} \rangle \ge r \ge 1$
which is a contradiction.
Example: Char Zof regular C[G]-module.
$\chi(e) = G $
Let geg with g ≠ e. [] permitation matrix
$\chi(q)?$ $\rho(q) = 0$
g.h ≠ h for any heG. () all diag LO 0
$\chi(g) = 0$ $\forall g \in G \setminus \{e\}$.