Representation Theory of Finite Groups
Yusra Naqvi (UCL) : y.naqvi@ucl.ac.uk.
1) Fundamentals
<u>II) Algebras</u>
Throughout: Fix a field IF.
J Defn O: Recall: A vector space V over IF is a set V together with
operations $i) + : V \times V \longrightarrow V$
$ii): iF \times V \longrightarrow V$ such that
a) V is an abelian gp under $+$ b) $\forall u, v \in V, \forall \lambda, \mu \in \mathbb{F}$:
$\frac{1}{2}\lambda(u+v) = \lambda u + \lambda v$ $\frac{1}{2}\lambda + \mu v = \lambda v + \mu v$
$3)(\lambda \mu) v = \lambda(\mu v)$ $4) _{F} v = v$
<u>Definition associative algebra A over F</u> is a vect sp A over F together with a bilinear map $A \times A \rightarrow A$, $(a, b) \mapsto ab$, such that $(ab)c = a(bc)$.
<u>Defn 2:</u> A <u>unit</u> in an assoc. alg. A is an elt. $I_A \in A$ s.t. $I_A \cdot a = a \cdot I_A = a$.
$\frac{Prop \ 1:}{PF:} \ TF \ A \ has \ a \ unit, \ Hen \ it must be unique.$ $\frac{PF:}{PF:} \ Suppose \ 1,1' \ are \ units \ in \ A. \ Then \ 1=1\cdot1'=1'.$
Henceforth, try an algebra, we will mean an associative algebra with a writ.
Examples: i) $A = F$ 2) $A = F[x_1, x_2,, x_n]$ (polynomials over F) 3) Let V be a vect sp. over F . Then $A = End(V)$ is an alg, where End(V) is the set of all linear maps $V \rightarrow V$. 4) The <u>free algebra</u> $A = F(x_1,, x_n)$ has basis consisting of words in $x_1,, x_n$, and multiplication given by concatenation: e.g. $(x_1x_2x_1) \cdot (x_3x_1) = x_1x_2x_1x_3x_1$

E) Let G be a group. The group algebra $A = \mathbb{F}[G]$ has basis indexed by elts in G, and multiplication given by the binary operation on G. (Elts have the form $\lambda_{1}g_{1}+\lambda_{2}g_{2}+\dots+\lambda_{n}g_{n}$, $g_{i}\in G, \lambda_{i}\in\mathbb{F}$.) Defin 3: An algebra A is <u>commutative</u> if $ab = ba$ $\forall a, b \in A$. Defin 4: A homomorphism of algebras $T: A \rightarrow B$ is a linear map such that $T(xy) = T(x)T(y)$ $\forall x, y \in A$, and $T(I_{A}) = I_{B}$.
1:2) Representations
<u>Defn 1:</u> A <u>representation</u> of an algebra A on a vect sp V is an algebra homomorphism $p: A \rightarrow End(V)$. In this case, we call V a' (left) <u>A-module</u> . <u>Notation</u> : We will often write p(a) v as simply av for a eA , $v \in V$. (So we treat $p: A \rightarrow End(V)$ as a map $A \times V \rightarrow V$.) Then the hom. property is given by (ab) $v = a(bv)$.
Examples: i) A any algebra, V=O, p zero map. z) V=A, p:A -> End (A) given by p(a) b = ab. This is called the regular rept of A. 3) A=F(x, , x2,, xn). Then any left A-module is a vect sp N over IF with a collection of arbitrary linear maps p(x1), p(x2),, p(xn) E End (V)
<u>Defn 2:</u> A <u>submodule</u> of an A-module V is a subspace $W \leq V$ which is invariant under $p(a) \in End(V)$ $\forall a \in A$. $(p(a): W \rightarrow W)$. The hom. $p_W: A \rightarrow End(W)$ is a <u>subrepresentation</u> of p .
<u>Defn 3:</u> An A-module $N \neq 0$ (and its associated repn) is <u>irreducible</u> (or <u>simple</u>) if its only submodules are 0 and V.
Definition Let $p: A \rightarrow End(V)$ and $\sigma: A \rightarrow End(W)$ be two repuss of A. Then a homomorphism (or intertwining operator) $\phi: V \rightarrow W$ is a linear map which commutes with the action of A, ie $\phi \circ p(a) = \sigma(a) \circ \phi$ $\forall a \in A$.
$\Phi \circ \rho(a)(y) = \sigma(a) \circ \Phi(y)$

W <u>cas</u> W • A hom. of repris is said to be an <u>isomorphism</u> (or <u>equivalence</u>) of reprise if it is an isomorphism of vector spaces. . The set of all home of repus. $V_1 \rightarrow V_2$ is denoted HomA (V1, V2 Defn 5: Let V, and V2 be A - modules. Then V, DV2 is also an A-module, under the map $a(v_1, v_2) \mapsto (av_1, av_2)$. This is called the <u>direct sum</u> of V, and V₂. Defin 6: A nonzero A-module V is said to be indecomposable if it is not isomorphic to a direct sum of two nonzero modules Note: Irreducible > Indecomposable Example: Let A = F[x] and $V = F^2$, and $p: A \rightarrow End(V)$ given by: $p(x) = \lceil 1 \rceil$ q(x) = [1 1] Then $p(x)\begin{bmatrix} i \\ 0 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$, so $W = \langle \begin{bmatrix} i \\ 0 \end{bmatrix} \rangle$ is a submodule Hence V is not irreducible. But if $[v_1] \notin W$, then $v_2 \neq 0$, so. $P(\mathbf{x})\begin{bmatrix}\mathbf{v}_1\\\mathbf{v}_2\end{bmatrix} = \begin{bmatrix}\mathbf{i} & \mathbf{i}\\\mathbf{0} & \mathbf{j}\end{bmatrix}\begin{bmatrix}\mathbf{v}_1\\\mathbf{v}_2\end{bmatrix} = \begin{bmatrix}\mathbf{v}_1 + \mathbf{v}_2\\\mathbf{v}_2\end{bmatrix} \neq \lambda\begin{bmatrix}\mathbf{v}_1\\\mathbf{v}_2\end{bmatrix} \text{ for any } \lambda \in \mathbf{F}.$ So $V \neq W \oplus U$ for any submedule U, and thus V is indecay prove the indecomposable. Prop 1: (Schur's Lemma:) Let V1, V2 be modules of an alg. A over a field F (not necessarily algebraically closed). Let $\Phi: V_1 \rightarrow V_2$ be a nonzero hom. of reprise Then i) If V, is irreducible, then Φ is injective. ii) IF V2 is irreducible, then Q is surjective. Thus, if V, and V2 are both irreducible, then Φ is an isomorphism. Exercise: • ker $\Phi = \{v \in V, | \phi(v) = Ov, \}$ is a submodule of V, • in $\Phi = \{\Phi(v) \in V_2 | v \in V_1 \}$ is a submodule of V_2 .

<u>PF:</u>i) We observe $K = \ker \Phi$ is a submod of V_1 . Since $\Phi \neq O$ and V_1 is irred, we must have K=O. Thus, Φ is inj. ii) The image Γ of Φ is a submod of V_2 . Since $\Phi \neq O$ and V_2 is irred, we must have $\Gamma = V_2$. Thus, Φ is surj. Cor 1: (Schur's Lemma for alg. closed fields:) Let V be a fin dim. irred A-module over an alg. closed field IF, and let $\phi: V \rightarrow V$ be an intertwining op. Then $\phi = \lambda \operatorname{Id}_{v}$ for some $\lambda \in F$. <u>PF</u>: Let λ be an eigenvalue of ϕ (which exists because FF is alg. closed). Then $\phi - \lambda Id$ is also an intertwining op which is not an isom (since its det is 0). Then by Prop I, the operator is the 0 map. Thus, $\phi = \lambda Id$. <u>over an alg. closed FF</u>. <u>Cor 2</u>: Let A be a commutative alg- Λ Then every irred fin. dim A-module V is I-dimensional. <u>PF</u>: Let V be irred. Then $\forall a \in A$, $p(a): V \rightarrow V$ is an intertwining op. Thus, by Schur's Lemma, p(a) is a scalar operator $\forall a \in A$. Hence, every subsp of V is a submod. So if V is irred, it cannot have any subspaces, and hence $\dim V = 1$ • • • • • • • • • • • • • • • • • . • • • • . • • • • • • • • • • • • • • •