Math 405: Lie Algebras Exercise Set 9

Throughout this homework, let Φ denote a root system in a Euclidean space E, with Weyl group W.

- 1. Let E' be a supspace of E. Show that if a reflection leaves E' invariant, then either $\alpha \in E'$ or $E' \subset P_{\alpha}$.
- 2. Let $\Phi^{\vee} = \{ \alpha^{\vee} \mid \alpha \in \Phi \}.$
 - (a) Show that Φ^{\vee} is a root system in E whose Weyl group is isomorphic to W.
 - (b) Prove that if Φ is irreducible, so is Φ^{\vee} .
 - (c) Show that $\langle \alpha^{\vee}, \beta^{\vee} \rangle = \langle \beta, \alpha \rangle$.
 - (d) Show that if Φ has all roots of equal length, so does Φ^{\vee} , and if Φ has roots of two different lengths, so does Φ^{\vee} , but in that case long roots in Φ become short roots in Φ^{\vee} and vice versa.
- 3. (a) Show that the order of $\sigma_{\alpha}\sigma_{\beta}$ in W is k when the angle between α and β is $\theta = \pi/k$ or $\theta = \pi \pi/k$. (*Hint*: $\sigma_{\alpha}\sigma_{\beta}$ produces a rotation of 2θ .)
 - (b) Use the result of the previous problem to classify all the Weyl groups of rank 2 as dihedral groups. (Note that there are 4 types of rank 2 root systems.)

[Additional problems may be added later this week.]