Math 405: Lie Algebras Exercise Set 7

Let $L=\mathfrak{s l}(2, \mathbb{C})$ throughout.
In class, we defined an L-module structure on $V=\mathfrak{s l}(3, \mathbb{C})$ as follows. For $z \in L$, let

$$
\hat{z}=\left[\begin{array}{c|c}
z & 0 \\
\hline 0 & 0
\end{array}\right] .
$$

Then for all $v \in V$, we define $z \cdot v=[\hat{z}, v]$.
We can then decompose V into a direct sum of irreducible submodules:

$$
\begin{aligned}
V & =\operatorname{sp}\{\hat{e}, \hat{h}, \hat{f}\} \oplus \operatorname{sp}\left\{e_{13}, e_{23}\right\} \oplus \operatorname{sp}\left\{e_{31}, e_{32}\right\} \oplus \operatorname{sp}\left\{\hat{I}_{2}-2 e_{33}\right\} \\
& \cong V_{2} \oplus V_{1} \oplus V_{1} \oplus V_{0}
\end{aligned}
$$

(You should verify that L acts trivially $\operatorname{sp}\left\{\hat{I}_{2}-2 e_{33}\right\}$, but you do not need to write this part up.)

1. Now let $V=V_{3} \otimes V_{7}$. We once again wish to decompose V into a direct sum of irreducible submodules.
(a) Verify that elements of the form $x^{a} y^{b} \otimes x^{j} y^{k}$ are eigenvectors of h, and determine the associated eigenvalues.
(b) Determine $\operatorname{dim}\left(W_{0}\right)+\operatorname{dim}\left(W_{1}\right)$, i.e. find the number of independent eigenvectors with eigenvalues 0 or 1 . Note that this is the number of distinct irreducible submodules.
(c) Find the highest weight vectors for each irreducible submodule.
(d) Write V as a direct sum of the form $V_{d_{1}} \oplus \cdots \oplus V_{d_{k}}$.
(e) (Optional Bonus Problem:) Develop a general formula for the decomposition of $V_{m} \otimes V_{n}$.
