Math 405: Lie Algebras Exercise Set 2

- 1. Let L be a Lie algebra and $x \in L$. Prove that the subspace of L spanned by the eignevectors of ad(x) is a subalgebra.
- 2. Show that the set of all inner derivations ad(x), $x \in L$, is an ideal of Der(L).
- 3. Let L_1 and L_2 be Lie algebras, and let $\phi : L_1 \to L_2$ be a surjective Lie algebra homomorphism. True or false:
 - (a) $\phi([L_1, L_1]) = [L_2, L_2]$
 - (b) $\phi(Z(L_1)) = Z(L_2)$
 - (c) If $h \in L_1$ and ad(h) is diagonalisable then $ad(\phi(h))$ is diagonalisable.

What if ϕ were an isomorphism instead?

- 4. Suppose L_1 and L_2 are Lie algebras. Let $L = \{(x_1, x_2) : x_i \in L_i\}$ be the direct sum of their underlying vector spaces.
 - (a) Show that if we define

$$[(x_1, x_2), (y_1, y_2)] = ([x_1, y_1], [x_2, y_2]),$$

then L becomes a Lie algebra, the direct sum of L_1 and L_2 , denoted $L = L_1 \oplus L_2$.

- (b) Show that if $L = L_1 \oplus L_2$, then L has ideals isomorphic to L_1 and L_2 .
- (c) Prove that $\mathfrak{gl}(2,\mathbb{C})$ is isomorphic to the direct sum of $\mathfrak{sl}(2,\mathbb{C})$ with \mathbb{C} .
- 5. Let L be the 3-dimensional complex Lie algebra with basis $\{x, y, z\}$. and Lie bracket defined by [x, y] = z, [y, z] = x, [z, x] = y. (Here L is the "complexification" of the Lie algebra \mathbb{R}^3 under the cross product.)
 - (a) Show that L is isomorphic to the Lie subalgebra of $\mathfrak{gl}(3,\mathbb{C})$ consisting of all 3×3 antisymmetric matrices with entries in \mathbb{C} .
 - (b) Find an explicit isomorphism showing $\mathfrak{sl}(2,\mathbb{C}) \equiv L$.
- 6. Show that over \mathbb{R} the Lie algebras $\mathfrak{sl}(2,\mathbb{R})$ and \mathbb{R}^3 under the cross-product are not isomorphic. Hint: Prove that there is no non-zero $x \in \mathbb{R}^3$ such that the map $\mathrm{ad}(x)$ is diagonalisable.