Math 405: Lie Algebras Exercise Set 1

1. Consider \mathbb{R}^3 as a Lie algebra with the bracket given by the cross-product, i.e.

$$[u, v] = u \times v.$$

Show that this satisfies the Jacobi identity.

2. Consider the general linear algebra $\mathfrak{gl}(V)$ under the bracket given by

$$[x,y] = x \circ y - y \circ x.$$

Show that this satisfies the Jacobi identity.

- 3. Show that the following subsets of $\mathfrak{gl}(n,\mathbb{F})$ are Lie algebras (with the same bracket operation as in $\mathfrak{gl}(n,\mathbb{F})$).
 - (a) $\mathfrak{b}(n,\mathbb{F})$, the set of upper triangular matrices
 - (b) $\mathfrak{d}(n, \mathbb{F})$, the set of diagonal matrices
 - (c) $\{x \in \mathfrak{gl}(n, \mathbb{F}) \mid sx = -x^t s\}$, where s is a fixed $n \times n$ matrix and x^t denotes the transpose of x.
- 4. A derivation of an algebra A is a linear function $D : A \to A$ such that for all $x, y \in A$, we have D(xy) = D(x)y + xD(y).
 - (a) Show that the composition of two derivations is not necessarily a derivation.
 - (b) Show that the commutator of two derivations is a derivation.
- 5. Compute the exponential of the following matrices:

(a)
$$X = \begin{bmatrix} 0 & -a \\ a & 0 \end{bmatrix}$$

(b)
$$Y = \begin{bmatrix} 0 & 3 & 5 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(c)
$$Z = \begin{bmatrix} 3 & -1 \\ 0 & 3 \end{bmatrix}$$