Math 375: Introduction to Representation Theory Exercise Set 7

1. Suppose $\lambda, \mu \vdash n$. We say λ dominates μ, denoted $\lambda \unrhd \mu$, if for all i,

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{i} .
$$

Let $\lambda>\mu$ indicate that λ follows μ in lexicographic order, i.e. there exists i such that $\lambda_{j}=\mu_{j}$ for all $j<i$ and $\lambda_{i}>\mu_{i}$.
(a) Find an example of partitions $\lambda, \mu \vdash n$ such that neither $\lambda \unrhd \mu$ nor $\mu \unrhd \lambda$ are true. (Hint: Consider $n \geq 6$.)
(b) Show that $\lambda \unrhd \mu$ implies $\lambda \geq \mu$.
(c) Show that if there exists a semistandard tableau of shape λ and content μ, then $\lambda \unrhd \mu$.
2. Decompose the following modules into a direct sum of Specht modules.
(a) $V^{(2,2,1)}$
(b) $W^{(4,3,3,1)} \uparrow S_{12}$
3. Compute the exponential of the following matrices:
(a) $X=\left[\begin{array}{cc}0 & -a \\ a & 0\end{array}\right]$
(b) $Y=\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]$
4. Find the matrices for the adjoint representation of $\mathfrak{s l}(3, \mathbb{C})$.

