Math 375: Introduction to Representation Theory Exercise Set 6

- 1. Let χ, ϕ and ϕ be characters of a group G. Show that $\langle \chi \psi, \phi \rangle = \langle \chi, \psi^* \phi \rangle$.
- 2. Suppose χ and ψ are irreducible characters of G, and ϕ is the trivial character of G. Show that

$$\langle \chi \psi, \phi \rangle = \begin{cases} 1 \text{ if } \chi = \psi^* \\ 0 \text{ if } \chi \neq \psi^* \end{cases}$$

3. There exists a group G of order 24 with precisely seven conjugacy classes with representatives g_1, \dots, g_7 , and has an irreducible character χ given by

$\begin{array}{c} g_i: \\ \bar{g_i} \end{array}$	$\begin{array}{c} g_1 \\ 1 \end{array}$	g_2 1	$g_3 \\ 6$		$\frac{g_5}{4}$	$\frac{g_6}{4}$	$\frac{g_7}{4}$
χ	2	-2	0	$-\omega^2$	$-\omega$	ω	ω^2

where $\omega = e^{2\pi i/3}$. Morever, we have that:

$$\begin{array}{l} g_1^2, g_2^2 \in \bar{g_1}, \\ g_3^2 \in \bar{g_2}, \\ g_5^2, g_6^2 \in \bar{g_4}, \\ g_4^2, g_7^2 \in \bar{g_5}. \end{array}$$

- (a) Find χ_A and χ_S and show that both are irreducible.
- (b) Complete the character table of G.
- 4. Find the character table of $D_3 \times C_3$.
- 5. Let V be a $\mathbb{C}[G]$ -module with character χ .
 - (a) The dual vector space V' is the set of linear functions $V \to \mathbb{C}$ under pointwise addition and scalar multiplication. We can define an action of G on V' by $(g \cdot f)(v) = f(g^{-1} \cdot v)$. Show that the character of V' is χ^* .

- (b) Let W be a $\mathbb{C}[G]$ -module with character ψ . Let $\operatorname{Hom}(V, W)$ denote the space of linear maps from V to W (not necessarily $\mathbb{C}[G]$ -homomorphisms). Define an action of G on $\operatorname{Hom}(V, W)$ by $(g \cdot \phi)(v) = g \cdot (\phi(g^{-1} \cdot v))$. Show that $\operatorname{Hom}(V, W)$ has character $\chi^* \psi$ by proving that it is isomorphic to $V' \otimes W$ as a $\mathbb{C}[G]$ -module.
- (c) Verify that $\operatorname{Hom}_{\mathbb{C}[G]}(V, W)$ consists of the set of point in $\operatorname{Hom}(V, W)$ that are fixed under the action of G specified above.
- (d) Use the previous part and Exercise 1 to show that $\dim(\operatorname{Hom}_{\mathbb{C}[G]}(V,W)) = \langle \chi, \psi \rangle$.