Math 375: Introduction to Representation Theory Exercise Set 5

1. Read: James and Liebeck

- Ch.12, p.104-113
- Ch.18, p.179-186

2. In class, we constructed the character table of D_{6}. Use this table to find all the normal subgroups of D_{6}.
3. In this problem, we consider the representations of D_{4} over \mathbb{C}.
(a) Find the characters of the tautological reperesentation of D_{4}. Use the character to show that this representation is irreducible.
(b) Find the conjugacy classes of D_{4}.
(c) Find the commutator subgroup of D_{4}.
(d) Find all the linear characters of D_{4}.
(e) Write out the character table for D_{4}.
4. There exists a group G of order 10 with precisely four conjugacy classes with representatives $g_{1}, g_{2}, g_{3}, g_{4}$, and has an irreducible character χ given by

$g_{i}:$	g_{1}	g_{2}	g_{3}	g_{4}
χ	2	$\frac{-1+\sqrt{5}}{2}$	$\frac{-1-\sqrt{5}}{2}$	0

(a) Find the sizes of the conjugacy classes of G. (Hint: It would be helpful to also have one other irreducible character for this.)
(b) Complete the character table of G.
5. Find the character tables of the following groups.
(a) $G=\left\langle a, b \mid a^{6}=b^{3}=1, a^{-1} b a=b^{-1}\right\rangle$.
(b) $G=\left\langle a, b \mid a^{4}=1, a^{2}=b^{2}, b^{-1} a b=a^{-1}\right\rangle$.

