Math 375: Introduction to Representation Theory Exercise Set 4

1. Let χ be the character of the 7 -dimensional permutation representation of S_{7}. Find $\chi(x)$ for $x=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $x=\left(\begin{array}{ll}1 & 6\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)$.
2. Let $\rho: G \rightarrow G L(V)$ be a representation, and let χ be the character of ρ. Prove the following statements:
(a) If $g \in G$ is an element of order 2 , then $\chi(g)$ is an integer such that $\chi(g) \equiv \chi(e)$ $\bmod 2$.
(b) $|\chi(g)|=\chi(e)$ if and only if $\rho(g)=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$. (Note that the absolute value of a complex number is given by $|x+i y|=\sqrt{x^{2}+y^{2}}$.)
(c) $\operatorname{ker}(\rho)=\{g \in G \mid \chi(g)=\chi(e)\}$
3. Prove that if χ is a faithful irreducible character if G, then the center of G is given by $Z(G)=\{g \in G| | \chi(g) \mid=\chi(e)\}$.
4. Let χ be an irreducible character of G, and suppose $z \in Z(G)$ is an element of order m. Show that there exists and $m^{\text {th }}$ root of unity $\lambda \in \mathbb{C}$ such that for all $g \in G$, $\chi(z g)=\lambda \chi(g)$.
5. Let χ be a character of G. Show that χ is a homorphism from G to \mathbb{C}^{\times}if and only if χ is the character of a degree one representation. (Such characters are called linear characters.)
6. Suppose χ is a non-zero, nontrivial character of G, and that $\chi(g)$ is a nonnegative real number for all $g \in G$. Show that χ must be reducible.
