Math 375: Introduction to Representation Theory Exercise Set 2

1. Let V be an $\mathbb{F}[G]$-module. Let $0, \overrightarrow{0}$ be the zero elements of $\mathbb{F}[G]$ and V, respectively.
(a) Show that:
i. $r \cdot \overrightarrow{0}=\overrightarrow{0}$ for all $r \in \mathbb{F}[G]$
ii. $0 \cdot \vec{v}=\overrightarrow{0}$ for all $\vec{v} \in V$
(b) Now let $\mathbb{F}=\mathbb{C}$ and V be the regular $\mathbb{F}[G]$-module. For $r, s \in \mathbb{C}[G]$, does $r s=0$ necessarily imply that either $r=0$ or $s=0$?
2. Let V be the Klein 4-group. Write out the matrices $\rho(g)$ for each element $g \in V$, where ρ is the regular representation of V.
3. Prove or disprove: the regular representation is always faithful.
4. Let $V=\mathbb{R}^{3}$ be the natural permuation module of the symmetric group S_{3}.
(a) Show that

$$
W=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}+x_{2}+x_{3}=0\right\}
$$

is a submodule.
(b) The representation $\rho: S_{3} \rightarrow G L(W)$ is known as the standard representation of S_{3}. Fix an explicit basis of W, and find 2×2 matrices for $\rho\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\rho(12)$ in this basis.
(c) Let $D_{3}=\left\{e, f, f^{2}, g, g f, g f^{2}\right\}$. We define the following degree 2 (tautological) representation of D_{3} :

$$
\begin{aligned}
\sigma(f) & =\frac{1}{2}\left[\begin{array}{cc}
-1 & -\sqrt{3} \\
\sqrt{3} & -1
\end{array}\right] \\
\sigma(g) & =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

We can identify D_{3} with S_{3} by letting $f=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $g=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Determine whether the standard representation ρ is equivalent to the tautological representation σ in this case.
5. When constucting the regular representation of G over \mathbb{F}, we used the fact that G can be regarded as a G-set under the action left multiplication of G, ie $g \cdot x=g x$ for $g, x \in G$. In this problem, we will use other actions of G on itself to construct new representations with associated module $\mathbb{F}[G]$.
(a) Define the right multiplication action $\cdot: G \times G \rightarrow G$ by $g \cdot x=x g^{-1}$. Show that right multiplication is in fact an action of G on itself. Explain why the operation $g \cdot x=x g$ is not an action.
(b) Show that the representation given by right multiplication is equivalent to the representation given by left multiplication.
(c) Define the conjugation action $\cdot: G \times G \rightarrow G$ by $g \cdot x=g x g^{-1}$. Show that conjugation is in fact an action of G on itself.
(d) Show that in general, conjugation is not equivalent to left multiplication. (Hint: Consider $G=C_{3}$.)

