Math 375: Introduction to Representation Theory Exercise Set 1

1. Let $D_{4}=\left\{e, f, f^{2}, f^{3}, g, g f, g f^{2}, g f^{3}\right\}$. We define the following degree 2 representations of D_{4} :

$$
\begin{aligned}
\rho\left(\left(g^{j} f^{k}\right)\right. & =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]^{j}\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]^{k} \\
\sigma\left(\left(g^{j} f^{k}\right)\right. & =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]^{j}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]^{k}
\end{aligned}
$$

Show that ρ and σ are equivalent representations. (Please specify an explicit linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that shows this equivalence.)
2. Give an example of a nontrivial representation of D_{3} for each of the degrees 1,2 and 3.
3. Let $C_{n}=\langle x\rangle$ be the cyclic group of order n generated by x. For $0 \leq j<n$, let $\rho_{j}: C_{n} \rightarrow G L(1, \mathbb{C}) \cong \mathbb{C}$ be the map given by

$$
\rho_{j}\left(x^{t}\right)=e^{2 \pi i j t / n} .
$$

(a) For which values of j is ρ_{j} a representation of C_{n} ?
(b) For which values of j is ρ_{j} a faithful representation of C_{n} ?
4. Show that equivalence of representations is an equivalence relation.
5. Suppose that ρ is a representation of G of degree 1. Prove that $G / \operatorname{ker}(\rho)$ is abelian.
6. Let $\phi: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Prove that the map

$$
\rho: g \mapsto \operatorname{det}(\phi(g))
$$

is also a representation of G.
7. Let $\phi: G \rightarrow G L(n, \mathbb{F})$ be a representation of G. Show that $\sigma: G / \operatorname{ker}(\rho) \rightarrow G L(n, \mathbb{F})$ given by $\sigma(g \operatorname{ker}(\rho))=\rho(g)$ is a faithful representation of $G / \operatorname{ker}(\rho)$. (Note that you must show that it is a well-defined representation, as well as showing that it is faithful.)

