Review Sheet

Linear Independence:

```
Vectors v_1, v_2, ..., v_n are linearly independent if the only solution to the equation

c_1v_1 + c_2v_2 + ... + c_nv_n = 0

is c_1 = c_2 = ... = c_m = 0. Otherwise these vectors are linearly dependent.
```

Proofs:

- When proving linear independence: have to show the only solution to the above equation is that all coefficients equal 0
- When proving linear dependence: find an example where one vector could be expressed as the linear combo of other vectors
- When told vectors are linear independent: know that the only solution to the above equation is that all coefficients equal 0

Think:

• What does this equation look like with polynomials?

Span:

The span of vectors $v_1, v_2, ..., v_n$ is the set containing all vectors that could be written as the linear combinations of $v_1, v_2, ..., v_n$.

Proofs:

- To show whether a set of vectors {v₁, v₂, ..., v_n} span a vector space W: (ex. Does v₁, v₂, v₃ span R³?)
 - Start with a vector w∈W ("Let w∈W...", or "For any w∈W...")
 - Can we write $w = c_1v_1 + c_2v_2 + ... + c_nv_n$? (linear combo of the given vectors)
 - If so, then yes ("since this is true for all w∈W…span W!")
 - If not, then provide a counter example (pick one specific $w \in W$)

Note:

- Sometimes the answer is obvious: "Are there enough vectors?" (e.g. 2 vectors cannot span ℝ³)
- The set of vectors in a span do NOT have to be linearly independent, but in a basis they do have to be linearly independent

Basis and Dimension: connection between linear independence and span

A **basis** has to be formed by a span of linearly independent vectors. The **dimension** of the basis is the number of the vectors in the span.

Proofs:

- To prove whether some vectors form a basis for a space, prove 2 of the 3 following things (usually proving (a) and (b) is the easiest):
 - a) Show that the vectors are linearly independent
 - b) Count the number of vectors to make sure it matches the dimension of the space
 - c) Show that the vectors span the whole space

Think:

- The basis for a line (dim=1) has 1 vector. The basis for a plane (dim=2) has 2 linearly independent vectors...
- The subspace for P_2 can never have a basis of more (or fewer) than 3 vectors

Sample Problems

Linear Independence: Chapter 2 Review #2 (p123):

Thought process:

- Need to show that for $c_1v_1 + c_2v_2 + c_3(v_1+v_2+v_3) = 0$, the only solution is $c_1 = c_2 = c_3 = 0$.
- Know that v₁, v₂, v₃ are linearly independent
- Expand expression: $c_1v_1 + c_2v_2 + c_3(v_1+v_2+v_3) = (c_1+c_3)v_1 + (c_2+c_3)v_2 + c_3v_3 = 0$
- Since v_1 , v_2 , v_3 are linearly independent...so (c_1+c_3) , (c_2+c_3) , c_3 all equal 0.
- ...and reach to the conclusion that $c_1 = c_2 = c_3 = 0$.

Proof:

Consider $c_1v_1 + c_2v_2 + c_3(v_1+v_2+v_3) = 0$.

 $c_1v_1 + c_2v_2 + c_3(v_1+v_2+v_3) = (c_1+c_3)v_1 + (c_2+c_3)v_2 + c_3v_3 = 0$

Since v_1 , v_2 , v_3 are linearly independent, this implies (c_1+c_3) , (c_2+c_3) , c_3 all equal 0 Therefore, $c_3=0$. $c_2+c_3=c_2+0=0$, so $c_2=0$. $c_1+c_3=c_1+0=0$, so $c_1=0$. Since the only solution for the equation is $c_1=c_2=c_3=0$, $\{v_1, v_2, v_1+v_2+v_3\}$ are linearly independent.

Span: Chapter 3 review exercise #7 (p195):

• To show that $v_2, \ldots v_n$ span V, need to show that any $v \in V$ can be written as the linear combo of $v_2, \ldots v_n$, or $v = d_2v_2 + \ldots + d_nv_n$ for some $d_2, \ldots d_n$.

Proof:

Since $c_1 \neq 0$, $v_1 = \frac{-c_2}{c_1}v_2 + \frac{-c_3}{c_1}v_3 + \dots + \frac{-c_n}{c_1}v_n$. In other words, v_1 is a linear combination of v_2, \dots, v_n . We know that v_1, \dots, v_n span V, which means that for any $v \in V$, $v = d_1v_1 + \dots + d_nv_n$ for some d_1, \dots, d_n . That means

$$v = d_1 \left(\frac{-c_2}{c_1} v_2 + \frac{-c_3}{c_1} v_3 + \dots + \frac{-c_n}{c_1} v_n \right) + d_2 v_2 + \dots + d_n v_n$$

= $\left(d_1 \frac{-c_2}{c_1} + d_2 \right) v_2 + \dots + \left(d_1 \frac{-c_n}{c_1} + d_n \right) v_n$

Since v can be expressed as a linear combination of $v_2, ..., v_n$ and this is true for any $v \in V$, $v_2, ..., v_n$ span V and span $\{v_2, ..., v_n\} = V$.

Basis: Chapter 3 review exercise #5a (p194):

- $\{v_1, v_2, v_3\}$ being a basis for v implies they are linearly independent and dim(V)=3.
- Need to show that v_1 , v_1+v_2 , $v_1+v_2+v_3$ are linearly independent. No need to show the set spans V because there are 3 vectors and we already know the dimension of V.

Proof:

Since V is a vector space, v_1 , v_2 , $v_3 \in V$ means v_1 , v_1+v_2 , $v_1+v_2+v_3 \in V$. Then the proof is exactly the same as in the "linear independence" problem.

After showing v_1 , v_1+v_2 , $v_1+v_2+v_3$ to be linearly independent and knowing that dim(V)=3, we can say that $\{v_1, v_1+v_2, v_1+v_2+v_3\}$ is a basis for V.