Math 272, Linear Algebra with Applications, Spring 2017 Final Exam Practice Test Solutions

1. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 4 & -4 \\
-2 & -4 & 4
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the eigenspace corresponding to each eigenvalue found in part (a).
(c) Find a formula for A^{n}. Your answer should consist of a single 3×3 matrix, where the entries may depend on n.

Answer

(a) The eigenvalues of A are 0,9 .
(b) The eigenspace corresponding 0 is

$$
E=\{(-2,1,0) s+(2,0,1) r \mid r, s \in \mathbb{R}\}
$$

The eigenspace corresponding 9 is

$$
E=\{(-1,-2,2) s \mid s \in \mathbb{R}\}
$$

(c) Let

$$
D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 9
\end{array}\right]
$$

and

$$
P=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
1 & 0 & -2 \\
0 & 1 & 2
\end{array}\right]
$$

Then

$$
P^{-1}=\left[\begin{array}{ccc}
-(2 / 9) & 5 / 9 & 4 / 9 \\
2 / 9 & 4 / 9 & 5 / 9 \\
-(1 / 9) & -(2 / 9) & 2 / 9
\end{array}\right]
$$

and

$$
\begin{aligned}
A^{n}=P D^{n} P^{-1} & =\left[\begin{array}{ccc}
-2 & 2 & -1 \\
1 & 0 & -2 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 9^{n}
\end{array}\right]\left[\begin{array}{ccc}
-(2 / 9) & 5 / 9 & 4 / 9 \\
2 / 9 & 4 / 9 & 5 / 9 \\
-(1 / 9) & -(2 / 9) & 2 / 9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
9^{n-1} & 2 \cdot 9^{n-1} & -2 \cdot 9^{n-1} \\
2 \cdot 9^{n-1} & 4 \cdot 9^{n-1} & -4 \cdot 9^{n-1} \\
-2 \cdot 9^{n-1} & -4 \cdot 9^{n-1} & 4 \cdot 9^{n-1}
\end{array}\right]
\end{aligned}
$$

2. (a) Prove that the set $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a+d=0\right\}$ is a subspace of $M_{2 \times 2}$, the set of 2×2 matrices.
(b) Find a basis for S.
(c) What is the dimension of S ?

Answer

(a) First note $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in S$ since it satisfies the condition. Now assume $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{ll}e & f \\ g & h\end{array}\right] \in$ S and $\alpha \in \mathbb{R}$. Then $a+d=0$ and $e+h=0$. Consider

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\alpha\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+\alpha e & b+\alpha f \\
c+\alpha g & d+\alpha h
\end{array}\right]
$$

Since $(a+\alpha e)+(d+\alpha h)=(a+d)+\alpha(e+h)=0+\alpha 0=0$, this matrix is in S, showing that S is closed under scalar multiplication and vector addition. Hence, S is a subspace of $M_{2 \times 2}$.
(b) We can see that

$$
S=\left\{\left.\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\}=\left\{\left.a\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

Hence the following set spans S.

$$
\left\{\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right\}
$$

Also, if $a\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, then we must have $a=b=$ $c=0$. Hence the set is also linearly independent. Therefore, the set given above is a basis for S.
(c) The dimension of S is 3 .
3. Let $T: V \rightarrow V$ be a linear transformation that is one to one. Show that if $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right\}$ is a linearly independent set in V, then so is $\left\{T\left(\mathbf{v}_{1}\right), \ldots T\left(\mathbf{v}_{n}\right)\right\}$.

Answer

Consider the equation

$$
c_{1} T\left(\mathbf{v}_{1}\right)+\ldots+c_{n} T\left(\mathbf{v}_{n}\right)=\mathbf{0}
$$

Since T is linear this can be rewritten as

$$
T\left(c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}\right)=\mathbf{0}
$$

Now, since T is one-to-one the kernel of T is $\{\mathbf{0}\}$, so we must have

$$
c_{1} \mathbf{v}_{1}+\ldots+c_{n} \mathbf{v}_{n}=\mathbf{0}
$$

Finally, since $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right\}$ is a linearly independent set we must have $c_{1}=\cdots=c_{n}=0$. This show that the only solution to

$$
c_{1} T\left(\mathbf{v}_{1}\right)+\ldots+c_{n} T\left(\mathbf{v}_{n}\right)=\mathbf{0}
$$

is the trivial solution, proving that the set is linearly independent.
4. Let A be an $m \times n$ matrix and suppose \mathbf{v} is a vector in $\operatorname{null}(A)$. Show that \mathbf{v} is orthogonal to every vector in $\operatorname{row}(A)$. (Hint: Find a spanning set for $\operatorname{row}(A)$ and show that \mathbf{v} is orthogonal to every vector in this set. Then use this to show that \mathbf{v} must be orthogonal to every vector in the span of this set.)
Answer
The set of row vectors, $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$, of A form a spanning set for $\operatorname{row}(A)$. Let \mathbf{v} be in $\operatorname{null}(A)$. Then $A \mathbf{v}=\mathbf{0}$. This implies that $\mathbf{a}_{i} \cdot \mathbf{v}=0$ for each row \mathbf{a}_{i} of A. Let \mathbf{u} be any vector in $\operatorname{row}(A)$, since $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\}$ spans row (A) we can write $\mathbf{u}=c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}$, for some $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{u} & =\mathbf{v} \cdot\left(c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}\right) \text { (substitution) } \\
& =c_{1}\left(\mathbf{v} \cdot \mathbf{a}_{1}\right)+\cdots+c_{n}\left(\mathbf{v} \cdot \mathbf{a}_{n}\right) \text { (properties of dot product) } \\
& =c_{1} 0+\ldots c_{n} 0=0\left(\text { since } \mathbf{a}_{i} \cdot \mathbf{v}=0 \text { for each } \mathbf{a}_{i}\right) .
\end{aligned}
$$

5. For each of the statements below, give an example of a 2×2 matrix A that satisfies the condition.
(a) A has eigenvectors $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5\end{array}\right]$ with eigenvalues 2 and 3 respectively.

Answer

Let $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and let $P=\left[\begin{array}{ll}5 & 4 \\ 6 & 5\end{array}\right]$. Then

$$
A=P D P^{-1}=\left[\begin{array}{ll}
-22 & 20 \\
-30 & 27
\end{array}\right]
$$

(b) A is the matrix representing the transformation $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{1}$ such that $T\left(a x^{2}+\right.$ $b x+c)=(3 a+b) x-2 a+4 b$, relative to the bases $\mathcal{B}=\left\{x^{2}, x^{2}+x, x^{2}+x+1\right\}$ of P_{1} and $\mathcal{C}=\{x, 1\}$ of P_{1}.
Answer

$$
A=\left[\begin{array}{ccc}
3 & 4 & 4 \\
-2 & 2 & 2
\end{array}\right]
$$

(c) A is a matrix such that $\operatorname{null}(A)=\left\{r\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ and $\operatorname{col}(A)=\left\{r\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.

Answer

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
$$

6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+y \\
x-y
\end{array}\right]
$$

(a) Show that T is an isomorphism.

Answer
We observe that $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$, so we can represent T by the matrix $A=\left[\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right]$. Since all matrix transformations are linear, we see that T must be linear in this case.
We can row reduce A to get:

$$
\left[\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right] \xrightarrow{1 / 2 R_{1}}\left[\begin{array}{cc}
1 & 1 / 2 \\
1 & -1
\end{array}\right] \xrightarrow{-R_{1}+R_{2}}\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & -3 / 2
\end{array}\right]
$$

Thus, since A has a pivot position in every column, we see that $\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(\operatorname{null}(A))=0$, so $\operatorname{ker}(T)=\{\mathbf{0}\}$, and thus T is one-to-one. Also, $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(\operatorname{col}(A))=2$, so T is onto. Therefore, since T is one-to-one, onto and linear, T is an isomorphism.
(b) Find the inverse transformation, T^{-1}.

Answer

$$
T^{-1}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=A^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
(x+y) / 3 \\
(x-2 y) / 3
\end{array}\right]
$$

7. Let $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4 \\ 4 \\ -1\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 2 \\ 0\end{array}\right]\right\}$.
(a) Find an orthonormal basis for S.

Answer

First, we find an orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for S :

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right]-\operatorname{proj}_{v_{1}}\left(\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right]-\frac{6}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{v}_{3} & =\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]-\operatorname{proj}_{v_{1}}\left(\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]\right)-\operatorname{proj}_{v_{2}}\left(\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]-\frac{4}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{10}{25}\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
2 \\
-2
\end{array}\right] .
\end{aligned}
$$

Now we scale these to unit vectors to get an orthonormal basis:

$$
\left\{\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right], \frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

(b) Find the projection of $\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right]$ onto S.

Answer

$$
\operatorname{proj}_{S}\left(\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]\right)=\frac{4}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{4}{4}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right]-\frac{4}{4}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
1
\end{array}\right]
$$

8. Determine whether each of the following statements is true or false, give a brief justification of your answer.
(a) If A and B are $n \times n$ matrices then $\operatorname{det}(A B)=\operatorname{det}(B A)$.

True. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(B A)$
(b) If A is a 3×3 matrix such that $\operatorname{det}(A)=-2$, then $\operatorname{det}\left(3 A^{2}\right)=36$.

False. $\operatorname{det}\left(3 A^{2}\right)=(3)^{3}(-2)^{2}=108$
(c) If the reduced row echelon form of a matrix A is the identity matrix I, then A is similar to I.
False. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ can be reduced to I (by scaling each row by $1 / 2$), but A cannot be similar to I, because similar matrices have the same eigenvalues, and A has eigenvalue 2 , while I only has eigenvalue 1 .
(d) If A and B are similar matrices, then they have the same eigenvectors.

False. A and B have to have the same eigenvalues, but not necessarily the same eigenvectors. For example, let $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right], P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$

$$
B=P A P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]
$$

Then B is similar to A. However, $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 3\end{array}\right]$ but $B\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, so $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is an eigenvector of A, but not of B.
(e) If U is a vector space in which one can find n linearly independent vectors in U, then $\operatorname{dim}(U)=n$.
False. The dimension of U could also be larger than n. For example, one can find 2 linearly independent vectors in \mathbb{R}^{3}, such as $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, but $\operatorname{dim}\left(\mathbb{R}^{3}\right)>2$.
(f) If T is a matrix transformation given by a matrix A, then $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(\operatorname{row}(A))$.

True. We know $\operatorname{range}(T)=\operatorname{col}(A)$, and that $\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)=\operatorname{dim}(\operatorname{row}(A)$. Thus, $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(\operatorname{row}(A))$.
(g) If A is an $n \times n$ matrix with at least n eigenvectors, then A is diagonalizable.

False. A must have n linearly independent eigenvectors in order to be diagonalizable. For instance, if $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ are both eigenvectors, but since it is not possible to find another independent eigenvector, this matrix is not diagonalizable.
(h) The transformation $T: M_{3 \times 3} \rightarrow M_{3 \times 3}$ given by $T(A)=A^{t}$ is linear.

True. If A and B are in $M_{3 \times 3}$, then

$$
T(A+B)=(A+B)^{t}=A^{t}+B^{t}=T(A)+T(B)
$$

so T preserves addition. Also, if c is a scalar, then

$$
T(c A)=(c A)^{t}=c(A)^{t}=c T(A)
$$

so T preserves scalar multiplication. Therefore, T is linear.

