Math 272, Linear Algebra with Applications, Spring 2017 Midterm 1 Practice Test

1. Determine all values of c for which the following linear system is consistent.

$$
\left\{\begin{array}{r}
2 x+4 y-4 z=12 \\
3 x+7 y-5 z=20 \\
x+3 y+c z=7
\end{array}\right.
$$

2. Let \mathbf{u} and \mathbf{v} be solutions to the linear system $A \mathbf{x}=\mathbf{b}$ and let c and d be constants such that $c+d=1$. Show that $c \mathbf{u}+d \mathbf{v}$ is also a solution to $A \mathbf{x}=\mathbf{b}$.
3. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 5 & -4 & 2 \\
-1 & 0 & 3 & -1 \\
-2 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$.
(b) Is A invertible?
4. Consider the set of vectors $\{(1,0,3,1),(0,1,-1,1),(1,2,1,0)\}$.
(a) Is the set linearly independent?
(b) Does the set span \mathbb{R}^{4} ?
5. Prove that if A and B are invertible matrices, then so is $A^{t} B A$.
6. Determine whether each of the following statements are true or false. Give a brief justification of your answer.
(a) A homogeneous linear system of 2 equations in 3 variables will always have infinitely many solutions.
(b) If A and B are $n \times n$ matrices then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(c) A set of $n+1$ vectors in \mathbb{R}^{n} is linearly dependent.
(d) A set of $n-1$ vectors in \mathbb{R}^{n} is linearly independent.

