Math 272, Linear Algebra with Applications, Spring 2017 Midterm 1 Practice Test, Solutions

1. Determine all values of c for which the following linear system is consistent.

$$
\begin{aligned}
&\left\{\begin{aligned}
2 x+4 y-4 z=12 \\
3 x+7 y-5 z=20 \\
x+3 y+c z=7
\end{aligned}\right. \\
& {\left[\begin{array}{rrr|r}
2 & 4 & -4 & 12 \\
3 & 7 & -5 & 20 \\
1 & 3 & c & 7
\end{array}\right] \xrightarrow{\stackrel{1}{2} R_{2}}\left[\begin{array}{rrrr|r}
1 & 2 & -2 & 6 \\
3 & 7 & -5 & 20 \\
1 & 3 & c & 7
\end{array}\right] } \\
&-3 R_{1}+R_{2} \\
&\left.-\begin{array}{rcc|c}
1 & 2 & -2 & 6 \\
0 & 1 & 1 & 2 \\
0 & 1 & c+2 & 1
\end{array}\right] \\
&-\underset{R_{1}+R_{3}}{-2 R_{2}+R_{1}}\left[\begin{array}{rcc|r}
1 & 0 & -4 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & c+1 & -1
\end{array}\right]
\end{aligned}
$$

If $c=-1$, then the system is inconsistent. Conversely, if $c \neq-1$, then we get a pivot position in the last row of the coefficient matrix as well, so the system will be consistent.
2. Let \mathbf{u} and \mathbf{v} be solutions to the linear system $A \mathbf{x}=\mathbf{b}$ and let c and d be constants such that $c+d=1$. Show that $c \mathbf{u}+d \mathbf{v}$ is also a solution to $A \mathbf{x}=\mathbf{b}$.
Since \mathbf{u} and \mathbf{v} are solutions to the linear system $A \mathbf{x}=\mathbf{b}$, we know that $A \mathbf{u}=\mathbf{b}$ and $A \mathbf{v}=\mathbf{b}$. Now let c and d be constants such that $c+d=1$. Then

$$
\begin{aligned}
A(c \mathbf{u}+d \mathbf{v}) & =A(c \mathbf{u})+A(d \mathbf{v}) \\
& =c A \mathbf{u}+d A \mathbf{v} \\
& =c \mathbf{b}+d \mathbf{b} \\
& =(c+d) \mathbf{b} \\
& =1 \mathbf{b} \\
& =\mathbf{b}
\end{aligned}
$$

Therefore, $c \mathbf{u}+d \mathbf{v}$ is also a solution to $A \mathbf{x}=\mathbf{b}$.
3. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 5 & -4 & 2 \\
-1 & 0 & 3 & -1 \\
-2 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$.

$$
\begin{array}{rlr}
\operatorname{det}(A) & =5\left|\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 3 & -1 \\
-2 & 0 & 1
\end{array}\right| & \text { (by cofactor expansion along the 2nd column) } \\
& =5\left(3\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right|\right) & \text { (by cofactor expansion along the } 2 \text { nd column) } \\
& =15(1-(-2)) \\
& =45
\end{array}
$$

(b) Is A invertible?
A is invertible since $\operatorname{det}(A) \neq 0$.
4. Consider the set of vectors $\{(1,0,3,1),(0,1,-1,1),(1,2,1,0)\}$.
(a) Is the set linearly independent?

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 2 \\
3 & -1 & 1 \\
1 & 1 & 0
\end{array}\right] \underset{\substack{-3 R_{1}+R_{4}}}{-3 R_{1}}\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & -1 & -2 \\
0 & 1 & -1
\end{array}\right]} \\
& \underset{-R_{2}+R_{4}}{\substack{R_{2}+R_{3}}}\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & -3
\end{array}\right] \\
& \xrightarrow{R_{3} \leftrightarrow R_{4}}\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{-\frac{1}{3} R_{3}}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow[-2 R_{1}+R_{2}]{-R_{3}+R_{1}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Thus, the only solution of the equation

$$
c_{1}(1,0,3,1)+c_{2}(0,1,-1,1)+c_{3}(1,2,1,0)=(0,0,0,0)
$$

is $c_{1}=c_{2}=c_{3}=0$, so the set is linearly independent.
(b) Does the set span \mathbb{R}^{4} ?

This set consists of only 3 vectors, and therefore cannot span a 4 dimensional space. (Also, the presence of a zero row in the reduced row echelon form of the matrix indicates that the equation $t_{1}(1,0,3,1)+t_{2}(0,1,-1,1)+t_{3}(1,2,1,0)=$ (a, b, c, d) could be inconsistent for some vectors (a, b, c, d).)
5. Prove that if A and B are invertible matrices, then so is $A^{t} B A$.

Let $C=A^{-1} B^{-1}\left(A^{-1}\right)^{t}$. Then

$$
\begin{aligned}
\left(A^{t} B A\right) C & =\left(A^{t} B A\right)\left(A^{-1} B^{-1}\left(A^{-1}\right)^{t}\right) \\
& =A^{t} B\left(A A^{-1}\right) B^{-1}\left(A^{-1}\right)^{t} \\
& =A^{t}\left(B B^{-1}\right)\left(A^{-1}\right)^{t} \\
& =A^{t}\left(A^{-1}\right)^{t} \\
& =\left(A^{-1} A\right)^{t} \\
& =I^{t} \\
& =I .
\end{aligned}
$$

Thus, $A^{t} B A$ is invertible, with inverse $A^{-1} B^{-1}\left(A^{-1}\right)^{t}$.
6. Determine whether each of the following statements are true or false. Give a brief justification of your answer.
There are many ways to give a justification of your answer: For true statements, you might give a short argument for why it is true, state a fact that the statement follows from, or (if applicable) state that we proved it as a theorem in class or that it is proven as a theorem in the book. For false statements, you might give a specific counter example, give a general description of when it would fail i.e. what a counter example might look like, or give a correction of the statement.
(a) A homogeneous linear system of 2 equations in 3 variables will always have infinitely many solutions.
True. A 2×3 matrix necessarily has a column without a pivot position, which corresponds to a free variable, and hence infinitely many solutions.
(b) If A and B are $n \times n$ matrices then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

False. For example,

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)=4
$$

but

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)+\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=1+1=2
$$

(c) A set of $n+1$ vectors in \mathbb{R}^{n} is linearly dependent.

True. The maximum number of linearly independent vectors in an n dimensional vector space is n.
(d) A set of $n-1$ vectors in \mathbb{R}^{n} is linearly independent.

False. For example $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\right\}$ is a linearly dependent set of 2 vectors in \mathbb{R}^{3}.

