Syllabus for the Linear Algebra Portion of the Mathematics Comprehensive Exam Department of Mathematics and Statistics, Amherst College

Basic Definitions

- Vector space
- Subspace
- Span of a subset
- Linear independence
- Basis and dimension
- Linear transformation
- Kernel or null space
- Image or range
- Inverse of a matrix or linear transformation
- Determinant and trace
- Characteristic polynomial
- Eigenvalues and eigenspaces
- Diagonalizability
- Similarity

Computational Techniques

- Determine when a subset is a subspace
- Basic matrix manipulations
- Row operations on matrices
- Solving systems of linear equations
- Find the inverse of a matrix
- Find a basis of a given subspace
- Find the nullity, rank, trace and determinant of a matrix
- Find the null space $N(T)$ and range $R(T)$ of a linear transformation T
- Given bases of V and W, find the matrix of a linear transformation $T: V \rightarrow W$
- Given a matrix or linear transformation:
- Compute its characteristic polynomial
- Find its eigenvalues and eigenspaces

Basic Results to Know

- $\operatorname{dim} N(T)+\operatorname{dim} R(T)=\operatorname{dim} V$
- nullity $(A)+\operatorname{rank}(A)=$ number of columns of A
- Criteria for A^{-1} to exist
- Criteria for A to be diagonalizable

Be able to write simple proofs of problems involving subspaces, linear maps, linear independence, spanning sets, null spaces and ranges.

