## Conditions for a Matrix to be Invertible

Math 272, Spring 2016

Theorem. Let $A$ be an $n \times n$ matrix. Then the following statements are equivalent:
(1) $A$ is invertible, i.e., there is an $n \times n$ matrix $B$ such that $A B=B A=I_{n}$.

Equivalences involving the row reduction of $A$ :
(2) $A$ can be row reduced to $I_{n}$, i.e., the reduced echelon form of $A$ is $I_{n}$.
(3) $A$ is a product of elementary matrices.

Equivalences involving linear systems with $A$ as coefficient matrix:
(4) The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbb{R}^{n}$.
(5) The linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution for some $\mathbf{b} \in \mathbb{R}^{n}$.
(6) The homogeneous linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Equivalences involving the columns of $A$ :
(7) The columns of $A$ are linearly independent in $\mathbb{R}^{n}$.
(8) The columns of $A$ span $\mathbb{R}^{n}$.
(9) The columns of $A$ form a basis of $\mathbb{R}^{n}$.

Equivalences involving matrix multiplication:
(10) There is an $n \times n$ matrix $B$ such that $B A=I_{n}$.
(11) There is an $n \times n$ matrix $B$ such that $A B=I_{n}$.

Other important equivalences:
(12) $\operatorname{det}(A) \neq 0$.
(13) $\operatorname{rank}(A)=n$.

