Conditions for a Matrix to be Invertible

Math 272, Spring 2016

THEOREM. Let A be an $n \times n$ matrix. Then the following statements are equivalent:

(1) A is invertible, i.e., there is an $n \times n$ matrix B such that $AB = BA = I_n$.

Equivalences involving the row reduction of A:

- (2) A can be row reduced to I_n , i.e., the reduced echelon form of A is I_n .
- (3) A is a product of elementary matrices.

Equivalences involving linear systems with A as coefficient matrix:

- (4) The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for all $\mathbf{b} \in \mathbb{R}^n$.
- (5) The linear system $A\mathbf{x} = \mathbf{b}$ has a unique solution for some $\mathbf{b} \in \mathbb{R}^n$.
- (6) The homogeneous linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Equivalences involving the columns of A:

- (7) The columns of A are linearly independent in \mathbb{R}^n .
- (8) The columns of A span \mathbb{R}^n .
- (9) The columns of A form a basis of \mathbb{R}^n .

Equivalences involving matrix multiplication:

- (10) There is an $n \times n$ matrix B such that $BA = I_n$.
- (11) There is an $n \times n$ matrix B such that $AB = I_n$.

Other important equivalences:

- (12) $\det(A) \neq 0$.
- (13) $\operatorname{rank}(A) = n$.