Math 272, Linear Algebra with Applications, Spring 2016 Final Exam Practice Test

1. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & -2 \\
2 & 4 & -4 \\
-2 & -4 & 4
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the eigenspace corresponding to each eigenvalue found in part (a).
(c) Find a formula for A^{n}. Your answer should consist of a single 3×3 matrix, where the entries may depend on n.
2. (a) Prove that the set $S=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a+d=0\right\}$ is a subspace of M_{22}, the set of 2×2 matrices.
(b) Find a basis for S.
(c) What is the dimension of S ?
3. Let $T: V \rightarrow V$ be a linear transformation that is one to one. Show that if $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{n}\right\}$ is a linearly independent set in V, then so is $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$.
4. Let A be an $m \times n$ matrix and suppose v is a vector in $\operatorname{null}(A)$. Show that v is orthogonal to every vector in $\operatorname{row}(A)$. (Hint: Find a spanning set for $\operatorname{row}(A)$ and show that v is orthogonal to every vector in this set. Then use this to show that v must be orthogonal to every vector in the span of this set.)
5. For each of the statements below, give an example of a 2×2 matrix A that satisfies the condition.
(a) A has eigenvectors $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5\end{array}\right]$ with eigenvalues 2 and 3 respectively.
(b) A is the matrix representing the transformation $T: P_{2} \rightarrow P_{1}$ such that $T\left(a x^{2}+\right.$ $b x+c)=(3 a+b) x-2 a+4 b$, relative to the bases $\mathcal{B}=\left\{x^{2}, x^{2}+x, x^{2}+x+1\right\}$ of P_{1} and $\mathcal{C}=\{x, 1\}$ of P_{1}.
(c) A is a matrix such that $\operatorname{null}(A)=\left\{r\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ and $\operatorname{col}(A)=\left\{r\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation given by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+y \\
x-y
\end{array}\right]
$$

(a) Show that T is an isomorphism.
(b) Find the inverse transformation, T^{-1}.
7. Let $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4 \\ 4 \\ -1\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 2 \\ 0\end{array}\right]\right\}$.
(a) Find an orthonormal basis for S.
(b) Find the projection of $\left[\begin{array}{c}-1 \\ 3 \\ 1 \\ 1\end{array}\right]$ onto S.
8. Determine whether each of the following statements is true or false, give a brief justification of your answer.
(a) If A and B are $n \times n$ matrices then $\operatorname{det}(A B)=\operatorname{det}(B A)$.
(b) If A is a 3×3 matrix such that $\operatorname{det}(A)=-2$, then $\operatorname{det}\left(3 A^{2}\right)=36$.
(c) If the reduced row echelon form of a matrix A is the identity matrix I, then A is similar to I.
(d) If A and B are similar matrices, then they have the same eigenvectors.
(e) If U is a vector space in which one can find n linearly independent vectors in U, then $\operatorname{dim}(U)=n$.
(f) If T is a matrix transformation given by a matrix A, then $\operatorname{dim}(\operatorname{range}(T))=\operatorname{dim}(\operatorname{row}(A))$.
(g) If A is an $n \times n$ matrix with at least n eigenvectors, then A is diagonalizable.
(h) The transformation $T: M_{33} \rightarrow M_{33}$ given by $T(A)=A^{t}$ is linear.

