Math 272, Linear Algebra with Applications, Spring 2016 Midterm 2 Practice Test 2

1. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 5 & -4 & 2 \\
-1 & 0 & 3 & -1 \\
-2 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find $\operatorname{det}(A)$.
(b) Is A invertible?
2. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
2 & 3 & 0 & 4 \\
-1 & 1 & 0 & 3
\end{array}\right]
$$

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find $\operatorname{rank}(A)$.
3. Suppose that the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for a vector space V. Show that the set $\left\{v_{1}, v_{2}, v_{1}+v_{3}\right\}$ is also a basis for V.
4. Let A be an $n \times n$ matrix, prove that 0 is an eigenvalue of A if and only if $\operatorname{rank}(A)<n$.
5. Determine whether each of the following statements is true or false, give a brief justification of your answer.
(a) If A is an $n \times n$ matrix, then $\operatorname{det}(c A)=c \operatorname{det}(A)$.
(b) The intersection of any two subspaces of a vector space V is a subspace of V.
(c) If V is a finite dimensional vector space, then any set of vectors that spans V is linearly independent.
(d) Any subset of a vector space containing the zero vector is linearly dependent.

