Math 272, Linear Algebra with Applications, Spring 2016 Midterm 2 Practice Test 1

1. Let A, B be 3×3 matrices and suppose $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=10$. Find $\operatorname{det}\left(2 A B^{-1}\right)$.
2. Consider the matrix

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]
$$

(a) Find all eigenvalues of A.
(b) Find the eigenspace corresponding to each eigenvalue found in part (a).
3. (a) Show that the set $S=\left\{p(x) \in \mathcal{P}_{3} \mid p(0)=0, p(1)=0\right\}$, is a subspace of \mathcal{P}_{3}.
(b) Find a basis for S.
(c) What is the dimension of S ?
4. Let U and W be subspaces of a vector space V such that $U \cap W=\{\mathbf{0}\}$. Let $\mathbf{u} \in U$ and $\mathbf{w} \in W$ and suppose that $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{w} \neq \mathbf{0}$. Prove that $\{\mathbf{u}, \mathbf{w}\}$ is linearly independent.
5. Determine whether each of the following statements is true or false, give a brief justification of your answer.
(a) If A and B are $n \times n$ matrices then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(b) If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly dependent set of vectors, then any vector in S can be expressed as a linear combination of the other vectors.
(c) If an $n \times n$ matrix is invertible, then the column vectors of the matrix form a basis for \mathbb{R}^{n}.
(d) If W is a subspace of a finite-dimensional vector space V then $\operatorname{dim}(W) \leq \operatorname{dim}(V)$.

