Math 272, Linear Algebra with Applications, Spring 2016 Midterm 1 Practice Test 2

1. Determine all values of c for which the following linear system is consistent.

$$
\left\{\begin{array}{r}
2 x+4 y-4 z=12 \\
3 x+7 y-5 z=20 \\
x+3 y+c z=7
\end{array}\right.
$$

2. Let \mathbf{u} and \mathbf{v} be solutions to the linear system $A \mathbf{x}=\mathbf{b}$ and let c and d be constants such that $c+d=1$. Show that $c \mathbf{u}+d \mathbf{v}$ is also a solution to $A \mathbf{x}=\mathbf{b}$.
3. Show that

$$
W=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, x+y-z=0\right\}
$$

is a subspace of \mathbb{R}^{4}. Find a basis for W. What is the dimension of W ?
4. Consider the set of vectors $\{(1,0,3,1),(0,1,-1,1),(1,2,1,0)\}$.
(a) Is the set linearly independent?
(b) Does the set span \mathbb{R}^{4} ?
5. Prove that if A and B are invertible matrices so is $A B A$.
6. Determine whether each of the following statements are true or false. Give a brief justification of your answer.
(a) A homogeneous linear system of 2 equations in 3 variables will always have infinitely many solutions.
(b) Any three vectors in \mathbb{R}^{3} will form a basis for \mathbb{R}^{3}.
(c) A linear system of 3 equations in 2 variables is always inconsistent.
(d) The composition of two linear transformations is a linear transformation.

