Math 272, Linear Algebra with Applications, Spring 2016 Midterm 1 Practice Test 1

1. Consider the linear system.

$$
\left\{\begin{array}{r}
x+y-2 z=3 \\
-x+2 y=-1 \\
-y+z=1
\end{array}\right.
$$

(a) Write the linear system in matrix form $A \mathbf{x}=\mathbf{b}$.
(b) Is A invertible? If so find the inverse.
(c) Find all solutions to the above linear system.
(d) Find all solutions to the corresponding homogeneous linear system $A \mathbf{x}=\mathbf{0}$.
2. If A is a 2×2 matrix and the entries on the main diagonal sum to 0 prove that there is some constant c such that $A^{2}=c I$.
3. Determine whether the following set S is a subspace of the \mathbb{R}^{3}. If it is a subspace find a basis for S and find its dimension.
(a) $S=\left\{\left(a, b, a+b^{2}\right) \mid a, b \in \mathbb{R}\right\}$
(b) $S=\left\{\left.\left[\begin{array}{c}a+b \\ a \\ b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$
4. A square matrix A is called symmetric if $A=A^{t}$ and antisymmetric is $A=$ $-A^{t}$. Show that if B is any square matrix then $B+B^{t}$ is symmetric and $B-B^{t}$ is antisymmetric.
5. Show the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is linear. Find a matrix representation for T.

$$
T(x, y)=(x-2 y, x+y,-x) .
$$

6. Determine whether each of the following statements are true or false. Give a brief justification of your answer.
(a) If the $n \times n$ matrix A does not have an inverse then the linear system $A \mathbf{x}=\mathbf{b}$ is inconsistent.
(b) Homogeneous linear systems always have at least one solution.
(c) A set of $n+1$ vectors in \mathbb{R}^{n} is linearly dependent.
(d) A set of $n-1$ vectors in \mathbb{R}^{n} is linearly independent.
