Syllabus for Linear Algebra (Math 271 and 272)
Basic definitions:
Vector space
Subspace
Span of a subset
Linear independence
Basis and dimension
Linear transformation
Kernel or null space
Image or range
Inverse of a matrix or linear transformation
Determinant and trace
Characteristic polynomial
Eigenvalues and eigenspaces
Diagonalizability
Similarity
Computational techniques:
Determine when a subset is a subspace
Basic matrix manipulations
Row operations on matrices
Solving systems of linear equations
Find the inverse of a matrix
Find a basis of a given subspace
Find the nullity, rank, trace, and determinant of a matrix
Find the null space $N(T)$ and range $R(T)$ of a linear transformation T
Given bases of V and W , find the matrix of a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow$ W

Given a matrix or linear transformation:
Compute its characteristic polynomial
Find its eigenvalues and eigenspaces
Basic results to know:
$\operatorname{dim} N(T)+\operatorname{dim} R(T)=\operatorname{dim} V$
nullity $(A)+\operatorname{rank}(A)=$ number of columns of A
Criteria for A^{-1} to exist
Criteria for A to be diagonalizable
Write simple proofs of problems involving subspaces, linear maps, linear independence, spanning sets, null spaces and ranges.

