Math 220, Discrete Mathematics, Spring 2017 Midterm 2 Practice Test

Instructions:

- Please read each question carefully.
- No calculators, notes, books, or outside help of any kind are allowed to be used on this exam. Please turn cell phones off!
- Show all of your work and explain your answers clearly. In order to receive full credit your work must be complete, clear, and logical.
- Please cross out or fully erase any work that you do not want graded.
- 1. Define a relation \mathcal{R} on \mathbb{R}^2 by $(a,b)\mathcal{R}(c,d)$ iff $a \leq c$.
 - (a) Show that \mathcal{R} is transitive. Suppose $(a,b)\mathcal{R}(c,d)$ and $(c,d)\mathcal{R}(e,f)$. Then $a \leq c$ and $c \leq e$, so by transitivity of \leq , we have $a \leq e$. Thus, $(a,b)\mathcal{R}(e,f)$ and so the relation \mathcal{R} is also transitive.
 - (b) Show that \mathcal{R} is not an equivalence relation. This relation is not symmetric because, for example, $(1,2)\mathcal{R}(2,3)$ since $1 \leq 2$, but we do not have $(2,3)\mathcal{R}(1,2)$ since $2 \nleq 1$.
 - (c) Show that \mathcal{R} is not a partial order relation. This relation is not antisymmetric because, for example, $(1,2)\mathcal{R}(1,3)$ and $(1,3)\mathcal{R}(1,2)$ since $1 \leq 1$, but $(1,2) \neq (1,3)$.
- 2. Give an example of a partially ordered set that is not totally ordered.

Consider $\mathcal{P}(\{1,2\})$ under the relation \subseteq . For all sets $A \in \mathcal{P}(\{1,2\})$ we have $A \subseteq A$, so this relation is reflexive. If $A \subseteq B$ and $B \subseteq C$ then we have $A \subseteq C$ so this relation is transitive. Finally, if $A \subseteq B$ and $B \subseteq A$, then we know A = B so this relation is antisymmetric. Thus, \subseteq is a partial order relation.

However, $\{1\} \not\subseteq \{2\}$ and $\{2\} \not\subseteq \{1\}$, so this relation is not a total order.

- 3. State and prove the divisibility test for:
 - (a) 11 **Claim:** Let $n = \langle d_k \dots d_1 d_0 \rangle$. Then 11|n if and only if $11|(-1)^k d_k + \dots d_1 + d_0$. Proof: We observe that since $10 \equiv (-1) \mod 11$, we know that $10^k \equiv (-1)^k \mod 11$ for all natural numbers $k \geq 2$. Therefore, $n \equiv (-1)^k d_k + \dots - d_1 + d_0 \mod 11$. Thus, 11|n if an only if $11|(-1)^k d_k + \dots - d_1 + d_0$.
 - (b) 18

Claim: Let $n = \langle d_k \dots d_1 d_0 \rangle$. Then 18|n if and only if $9|d_k + \dots + d_1 + d_0$ and $2|d_0$.

Proof: By the theorems proved in class, 9|n if and only if $9|d_k + \cdots + d_1 + d_0$, and 2|n if and only if $2|d_0$. By a homework exercise, we know that since gcd(9,2) = 1, 18|n if and only if 9|n and 2|n.

- 4. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f((a,b)) = a b.
 - (a) Determine whether f is onto. Let r be an element of \mathbb{R} . Then (r,0) is in the set \mathbb{R}^2 and f((r,0)) = r - 0 = r, so the set f is onto.
 - (b) Find $f^{-1}(\{0\})$. $f^{-1}(\{0\}) = \{(a, a) \mid a \in \mathbb{R}\}$
 - (c) Determine whether f is invertible. f is not invertible since it is not 1-1. For instance, f((1,1)) = f((2,2)) = 0.
- 5. Prove the following statement or give a counterexample: Let $a, b, c \in \mathbb{N}$. If $gcd(a, b) \neq 1$ and a|(b+c) then $gcd(a, c) \neq 1$.

This statement is **true**. Since a|(b+c) there is some $n \in \mathbb{Z}$ such that b+c=an, and so c=an-b. Let $g=\gcd(a,b)$. Then g|a and g|b, and so we must have g|(an-b) and thus g|c. This implies that g is a common divisor of a and c and hence $g \leq \gcd(a,c)$. Since g > 1, we must have $\gcd(a,c) > 1$ also.

- 6. Compute the following:
 - (a) The number of ways of ordering 3 different one topping pizzas, given that there is a choice of 10 possible toppings.

 $10 \cdot 9 \cdot 8$

[Note: I would also accept treating this as an unordered arrangement, which would give you $10 \cdot 9 \cdot 8/3!$ ways. I will attempt to disambiguate more carefully on the exam to avoid this confusion.]

(b) The number of different license plates if each contains 1 number followed by two letters followed by 3 numbers.

 $10\cdot 26^2\cdot 10^3$

(c) The number of positive divisors of $2^8 3^2 5^7 11^3$.

 $9 \cdot 3 \cdot 8 \cdot 4$

(d) The number of cards to be dealt from a standard deck to guarantee 5 cards of the same suit.

4(4) + 1