Math 220, Discrete Mathematics, Spring 2017 Midterm 1 Practice Test Solutions

Instructions:

- Please read each question carefully.
- No calculators, notes, books, or outside help of any kind are allowed to be used on this exam. Please turn cell phones off!
- Show all of your work and explain your answers clearly. In order to receive full credit your work must be complete, clear, and logical.
- Please cross out or fully erase any work that you do not want graded.
- 1. Let a be an integer. Prove $a^2 2a + 5$ is even if and only if a is odd.
 - $(\Leftarrow:)$ Suppose a is odd. Then a=2k+1 for some $k\in\mathbb{Z}$, and so

$$a^{2} - 2a + 5 = (2k + 1)^{2} - 2(2k + 1) + 5$$

$$= 4k^{2} + 4k + 1 - 4k - 2 + 5$$

$$= 4k^{2} + 4$$

$$= 2(2k^{2} + 2).$$

Thus, $a^2 - 2a + 5$ is even.

 $(\Rightarrow:)$ Now suppose a is even. Then a=2m for some $m\in\mathbb{Z}$, and so

$$a^{2} - 2a + 5 = (2m)^{2} - 2(2m) + 5$$
$$= 4m^{2} - 4m + 5$$
$$= 2(2m^{2} - 2m + 2) + 1.$$

Thus $a^2 - 2a + 5$ is odd in this case, and therefore $a^2 - 2a + 5$ is even if and only if a is odd.

2. Prove

$$-1 + 2 - 3 + \dots - (2n - 1) + 2n = n$$

for all natural numbers n.

We use induction on n.

Base case: Let n = 1. Then -1 + 2 = 1.

Inductive step: Suppose $-1+2-3+\cdots-(2k-1)+2k=k$ for some $k\in\mathbb{N}$. Then

$$-1 + 2 - 3 + \dots - (2k - 1) + 2k - (2(k + 1) - 1) + 2(k + 1)$$

$$= k - (2(k + 1) - 1) + 2(k + 1) \text{ (by the inductive hypothesis)}$$

$$= k - 2k - 1 + 2k + 2$$

$$= k + 1.$$

Therefore, the statement holds for all $n \in \mathbb{N}$.

- 3. Let D_k be the set of *prime* divisors of k.
 - (a) Find D_1 and D_{20} .
 - (b) Find $|D_{10} \times D_{15}|$.
 - (c) Find the power set of D_6 .
 - a. $D_1 = \emptyset, D_{20} = \{2, 5\}.$

b.
$$D_{10} = \{2, 5\}, D_{15} = \{3, 5\}, \text{ so } |D_{10} \times D_{15}| = |D_{10}||D_{15}| = 2 \cdot 2 = 4.$$

$$c.D_6 = \{2,3\} \text{ so } \mathcal{P}(D_6) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}.$$

4. Use the Euclidean Algorithm to find gcd(1320, 231)

$$1320 = 5(231) + 165$$

$$231 = 1(165) + 66$$

$$165 = 2(66) + 33$$

$$66 = 2(33) + 0.$$

Thus gcd(1320, 231) = 33.

5. Construct a truth table to show that the statement $P\Rightarrow Q$ is equivalent to the statement $(\sim P)\vee Q$.

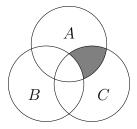
P	Q	$P \Rightarrow Q$	$\sim P$	$(\sim P) \vee Q$
Т	Т	Т	F	Т
T T F	F	F	\mathbf{F}	\mathbf{F}
\mathbf{F}	Т	T	${ m T}$	T
F	F	T	Τ	Т

6. Suppose A, B, and C are sets. Explain whether the following are true or false.

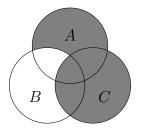
(a)
$$(A \backslash B) \cap C = (C \backslash B) \cap A$$
.

(b)
$$(A \setminus B) \cup C = (C \setminus B) \cup A$$
.

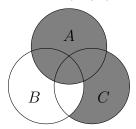
a. True. Both regions are given by:



b. False. $(A \setminus B) \cup C$ is given by:



whereas $(C \backslash B) \cup A$ is given by:



7. Consider the statement: $\forall a \in \mathbb{Z}$ and $b \in \mathbb{N}$, $\exists c \in \mathbb{N}$ such that ac > ab.

- (a) Write down the negation of the statement.
- (b) Is the original statement true or false? Explain your answer.
- a. $\exists a \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that $\forall c \in \mathbb{N}$, $ac \leq ab$.

b. The original statement is false. If a=0, b=1, then ac=ab=0 for all $c \in \mathbb{N}$, and so there does not exist $c \in \mathbb{N}$ such that ac>ab.