# Math 220, Discrete Mathematics, Spring 2017 <br> Midterm 1 Practice Test Solutions 

## Instructions:

- Please read each question carefully.
- No calculators, notes, books, or outside help of any kind are allowed to be used on this exam. Please turn cell phones off!
- Show all of your work and explain your answers clearly. In order to receive full credit your work must be complete, clear, and logical.
- Please cross out or fully erase any work that you do not want graded.

1. Let $a$ be an integer. Prove $a^{2}-2 a+5$ is even if and only if $a$ is odd.
$(\Leftarrow:)$ Suppose $a$ is odd. Then $a=2 k+1$ for some $k \in \mathbb{Z}$, and so

$$
\begin{aligned}
a^{2}-2 a+5 & =(2 k+1)^{2}-2(2 k+1)+5 \\
& =4 k^{2}+4 k+1-4 k-2+5 \\
& =4 k^{2}+4 \\
& =2\left(2 k^{2}+2\right) .
\end{aligned}
$$

Thus, $a^{2}-2 a+5$ is even.
$(\Rightarrow:)$ Now suppose $a$ is even. Then $a=2 m$ for some $m \in \mathbb{Z}$, and so

$$
\begin{aligned}
a^{2}-2 a+5 & =(2 m)^{2}-2(2 m)+5 \\
& =4 m^{2}-4 m+5 \\
& =2\left(2 m^{2}-2 m+2\right)+1
\end{aligned}
$$

Thus $a^{2}-2 a+5$ is odd in this case, and therefore $a^{2}-2 a+5$ is even if and only if $a$ is odd.
2. Prove

$$
-1+2-3+\cdots-(2 n-1)+2 n=n
$$

for all natural numbers $n$.
We use induction on $n$.
Base case: Let $n=1$. Then $-1+2=1$.
Inductive step: Suppose $-1+2-3+\cdots-(2 k-1)+2 k=k$ for some $k \in \mathbb{N}$. Then

$$
\begin{aligned}
-1+2 & -3+\cdots-(2 k-1)+2 k-(2(k+1)-1)+2(k+1) \\
& =k-(2(k+1)-1)+2(k+1)(\text { by the inductive hypothesis) } \\
& =k-2 k-1+2 k+2 \\
& =k+1
\end{aligned}
$$

Therefore, the statement holds for all $n \in \mathbb{N}$.
3. Let $D_{k}$ be the set of prime divisors of $k$.
(a) Find $D_{1}$ and $D_{20}$.
(b) Find $\left|D_{10} \times D_{15}\right|$.
(c) Find the power set of $D_{6}$.
a. $D_{1}=\varnothing, D_{20}=\{2,5\}$.
b. $D_{10}=\{2,5\}, D_{15}=\{3,5\}$, so $\left|D_{10} \times D_{15}\right|=\left|D_{10}\right|\left|D_{15}\right|=2 \cdot 2=4$.
c. $D_{6}=\{2,3\}$ so $\mathcal{P}\left(D_{6}\right)=\{\varnothing,\{2\},\{3\},\{2,3\}\}$.
4. Use the Euclidean Algorithm to find $\operatorname{gcd}(1320,231)$

$$
\begin{aligned}
1320 & =5(231)+165 \\
231 & =1(165)+66 \\
165 & =2(66)+33 \\
66 & =2(33)+0 .
\end{aligned}
$$

Thus $\operatorname{gcd}(1320,231)=33$.
5. Construct a truth table to show that the statement $P \Rightarrow Q$ is equivalent to the statement $(\sim P) \vee Q$.

| $P$ | $Q$ | $P \Rightarrow Q$ | $\sim P$ | $(\sim P) \vee Q$ |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | T |
| T | F | F | F | F |
| F | T | T | T | T |
| F | F | T | T | T |

6. Suppose $A, B$, and $C$ are sets. Explain whether the following are true or false.
(a) $(A \backslash B) \cap C=(C \backslash B) \cap A$.
(b) $(A \backslash B) \cup C=(C \backslash B) \cup A$.
a. True. Both regions are given by:

b. False. $(A \backslash B) \cup C$ is given by:

whereas $(C \backslash B) \cup A$ is given by:

7. Consider the statement: $\forall a \in \mathbb{Z}$ and $b \in \mathbb{N}, \exists c \in \mathbb{N}$ such that $a c>a b$.
(a) Write down the negation of the statement.
(b) Is the original statement true or false? Explain your answer.
a. $\exists a \in \mathbb{Z}$ and $b \in \mathbb{N}$ such that $\forall c \in \mathbb{N}, a c \leq a b$.
b. The original statement is false. If $a=0, b=1$, then $a c=a b=0$ for all $c \in \mathbb{N}$, and so there does not exist $c \in \mathbb{N}$ such that $a c>a b$.
