Math 220: Discrete Mathematics HW for Section 3.4

1. Prove the following:
(a) If $a \equiv b \bmod n$, and $m \mid n$, then $a \equiv b \bmod m$.
(b) If $a \equiv b \bmod n$, and $c>0$, then $c a \equiv c b \bmod c n$.
(c) If $a \equiv b \bmod n$, then $n \mid a$ if and only if $n \mid b$.
2. (a) Show that if a, b are relatively prime natural numbers, then n is divisible by the product $a b$ if and only if $a \mid n$ and $b \mid n$.
(b) Show that if a, b are not relatively prime natural numbers, then there exists a natural number n which is divisible by both a and b but not $a b$.
3. State and prove the divisibility tests for the following numbers:
(a) 12
(b) 25
4. The number 25,730 is divisible by 10 and by 2 . Is it divisible by 20 ? Explain why or why not.
5. Suppose a is a natural number such that the sum of the digits of a equals the sum of the digits of $5 a$. Show that $9 \mid a$.
6. Let n be a natural number, and let m be formed from n by switching two digits d_{i} and d_{j}. (For example, 86231 is formed form 83261 by switching d_{3} and d_{1}. Mixing up two digits like this is sometimes called a transposition error.) Show that $9 \mid(m-n)$.
