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Chapter 1

Introduction

As the simplest nontrivial diophantine equations, quadratic forms represent one of

the most well-studied areas of number theory. Although the subject is a relatively

old one, open questions persist, and many are concerned with the class number of

quadratic forms. The class number of binary quadratic forms of discriminant d is

defined classically as the number of inequivalent forms of discriminant d under the

action of SL2(Z) by change of variable. It can also be realized as the order of the

ideal class group, however this definition will not arise in this paper.

It was already clear to Gauss that the behavior of class numbers is vastly different

for positive and negative discriminants. The theory of class numbers of negative

discriminants is by far the easier case, and was essentially worked out in its entirety

in the nineteenth century. The case of positive discriminants has proven, however, to

be much more difficult. The difference between the cases of positive and negative d

arises in differences in the group of automorphs in SL2(Z) of a form. This group is

always finite for a form of negative discriminant, whereas it is infinite cyclic in the

case of positive discriminants. Algebraically stated, |(Od)
×| <∞ for d < 0 (where Od

is the ring of integers associated with the number field Q(
√

d)), and |(Od)
×| =∞ for

d > 0. Analytically stated, we have the two cases of Dirichlet’s class number formula
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[Dav],

h(d) =


w(d)
√
|d|Ld(1)

2π
if d < 0,

√
dLd(1)

log(εd)
if d > 0,

(1.1)

where Ld(s) is the Dirichlet L-function associated to |d|, εd = t+u
√

d
2

is the funda-

mental solution to Pell’s equation t2 − du2 = 4, or the fundamental unit of Od, and

w(d) is the number of automorphs of a form of discriminant d or |(Od)
×| and is given

by

w(d) =


2 if d < −4,

4 if d = −4,

6 if d = −3.

The presence of εd in (1.1) significantly complicates the study of h(d) for d > 0,

as it fluctuates wildly with d. Generally speaking, the best possible bounds on εd are

given by

2
√

d < εd < ec
√

d log(d),

where the lower bound is given by elementary considerations, and the upper bound is

given by considering the genera of binary quadratic forms of discriminant d and the

class number formula.

1.1 The Problem and Its History

One would like to know just how big the class numbers are. Because h(d) fluctuates

widely from one discriminant to the next, the appropriate question to ask is “how

fast do the h(d) grow on average for large |d|?” In this paper we are concerned with

the following
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Problem 1.1.1. To what function is

s(x) =
∑
|d|<x

h(d) ∼ ?

This problem has a long history, from Gauss to Dirichlet, Siegel, Sarnak, Hooley

and Kwon. In this paper, I will present numerical evidence supporting a conjec-

ture of Hooley’s on the positive discriminant case. These numerics are based on a

computation of the all positive class numbers of d ≤ 5.2×107 preformed by Lee Ken-

nard, Jennifer Koonz, Katharine Shultis, Haokun Xu and myself at the summer 2006

Mount Holyoke REU in Mathematics under the direction of Giuliana Davidoff. This

paper represents the first time that theory on asymptotics of positive discriminant

class numbers has been shown to agree with practical computation. My hope is that

the confidence that these numerics give to the theoretical work previously done will

encourage new interest in this area of the theory of class numbers.

1.1.1 Gauss, Siegel

As is not surprising, Gauss was the first to make any statment concerning asymptotics

of class numbers. Whereas we now take a binary quadratic form to be any ax2+bxy+

cy2 with a, b, c ∈ Z, Gauss worked over “classical forms” ax2 + 2bxy + cy2, a, b, c ∈ Z.

Correspondingly, we now take the discriminant to be d = b2 − 4ac, whereas Gauss

used “classical discriminants” D = b2 − ac. In an attempt to avoid confusion, I will

use lower-case d when refereing to standard discriminants, and a capital D to refer

to classical discriminants. Note that d falls into only two residue classes modulo 4,

namely d ≡ 0, 1(4), whereas D may take on any value modulo 4. The case of d ≡ 0(4)

corresponds to the case that b is even, and hence for d ≡ 0(4) we have d = 4D.

Therefore, although the classical discriminants D fall into all four residue classes

modulo 4, they can be viewed as only encompassing half of the possible discriminants.
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In Gauss’s Disquisitiones Arithmeticae he proves for classical negative discrimi-

nants

∑
|D|≤X

h(D) ∼ 4π

21ζ(3)
X

3
2 .

Whereas for positive discriminants he asserts

∑
D≤X

h(D) log(εD) ∼ 4π2

21ζ(3)
X

3
2

without giving proof [Gau]. The proof of this statement and that of the corresponding

asymptotic for standard discriminants

∑
d≤x

h(d) log(εd) ∼
π2

18ζ(3)
x

3
2

were not given until almost 150 year later by Siegel in his 1944 paper The Average

Measure of Quadratic Forms with Given Determinant and Signature. [Sie].

1.1.2 Hooley

In light of Dirichlet’s class number formula (1.1) it is usually assumed that for pos-

itive d, the quantities h(d) and log(εd) are essential inseparable. Indeed, this was

the view that prompted Gauss and later mathematicians to prove asymptotics for∑
h(d) log(εd) as opposed to

∑
h(d) itself. Having been viewed as an extremely dif-

ficult question, no asymptotic for the later sum was even proposed until 1984. In

his paper On the Pellian equation and the class number of indefinite binary quadratic

forms Christopher Hooley proposed the following

Conjecture 1.1.2. For the class numbers h(D) of classical positive discriminants D

we have

S(X) =
∑
D≤X

h(D) ∼ 25

12π2
X log2(X). (1.2)
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[Hoo]

Although Hooley gives a detailed account of his process for arriving at this asymp-

totic, he makes a key assumption which unfortunately prevents his arguments from

being rigorous. Chapter 3 provides a more detailed account of Hooley’s method for

arriving at this asymptotic.

1.1.3 Kwon

In the academic year 2005-2006 as her undergraduate thesis (also under the direction

of Peter Sarnak) Suehyun Kwon undertook to produce numerics on the asymptotic

for standard positive discriminants [Kwo]

s(x) =
∑
d≤x

h(d) = ? (1.3)

The program she wrote used an algorithm based on the method of grouping re-

duced forms into chains of equivalent forms which can be found in Dickson’s Introduc-

tion to the Theory of Numbers [Dic]. Anticipating that any asymptotic of the above

form would include logarithm terms, and that log(x) would remain small for values

of x she could reasonably hope to achieve, Kwon looked for a fomula of the type

s(x) = ax log2(x) + bx log(x) + cx + O(xγ), where γ ∈ (0, 1).

At such small values of x, the lower order terms corresponding to b and c still

significantly affect s(x), and one can not hope to get an accurate picture in this

restricted data range without their inclusion. After using her program to compute

h(d) for d ≤ 3.5× 106, she proposes

Conjecture 1.1.3. For the class numbers h(d) of standard positive discriminants d
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we have

s(x) =
∑
d<x

h(d) = 0.0661...x log2(x)−0.894...x log(x)+4.96...x+O(xγ), where γ ∈ (0, 1).

(1.4)

where it is understood that the explicit constants displayed are expected to be accu-

rate to the number of decimal places displayed (and have no meaning beyond their

truncation).

As we will see later, this conjecture is not correct because s(x) does not settle down

to an asymptotic until around x = 8 × 106, which Kwon could not have predicted

given her limited amount of data.
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Chapter 2

Numerical Evidence

2.1 Mount Holyoke

2.1.1 Computation

At Peter Sarnak’s suggestion, Giuliana Davidoff led the 2006 Mount Holyoke College

mathematics REU in attempting to verify and improve upon the results of Kwon.

Much of the summer was spent learning the necessary theoretical background to do

work in this discipline, but the project succeeded in extending Kwon’s data.

Whereas Kwon used her own algorithm based on the classical theory of quadratic

forms, the REU employed PARI/GP, a widely used computer algebra system designed

for fast computations in number theory developed by Henri Cohen, to compute the

class number [PARI]. Running PARI on 15 classroom desktop PCs for 3 weeks

produced all h(d) with d ≤ 5.2×107. Excluding the h(d) for d ≡ 1(4) and dividing the

discriminants by 4 gave us the corresponding set of h(D) for classical discriminants

D ≤ 1.3×107. Thus, a relatively large set of data was produced with which we could

check conjectures concerning both standard and classical discriminants.

To compute class numbers, we used PARI’s built-in function qfbclassno( ). As

opposed to the classical method of computing h(d), PARI computes the class number

7



analytically via the class number formula (1.1). The algorithm, which can be found in

Cohen’s book A Course in Computational Algebraic Number Theory , has two main

parts, the computations of Ld(1) and of the regulator log(εd).

Computation of Ld(1) directly from it’s definition

Ld(1) =
∑
n≥1

(
d

n

)
1

n

is extremely slow because the defining series is only conditionally convergent. PARI’s

algorithm however, makes use of the functional equation of Ld(s)

Λd(1− s) = Λd(s)

where

Λd(s) = (d/π)s/2Γ(s/2)Ld(s)

to obtain an exponentially converging method of computing Ld(1), which is based on

the formula

h(d) log(εd) =
1

2

∑
n≥1

(
d

n

)(√
D

n
erfc

(
n

√
π

d

)
+ E1

(
πn2

d

))
,

where

erfc(x) =
2√
π

∫ ∞

x

e−t2 dt

is the error function, and

E1(x) =

∫ ∞

x

e−t

t
dt

is the exponential integral[Coh]. Efficient algorithms are known for computing both

of these functions.

Secondly, the algorithm needs log(εd) to compute h(d) from the class number

formula. The primary concern with this aspect of the algorithm is that εd quickly

8



becomes extremely large. Accordingly, PARI computes the regulator log(εd) directly

to avoid such an overflow. The algorithm for computing the regulator is essentially the

standard continued-fraction method of finding solutions to t2 − du2 = ±1. However,

as soon as numbers become large, they are converted to logarithmic form and stored

as such, avoiding dealing with absurdly large numbers while still keeping the number

of steps of computation down [Coh].

For d > 0, the algorithm is O(d
1
2
+ε), and runs substantially faster than the classical

algorithm from what we observed.

2.1.2 Näıve Data Analysis

The Mount Holyoke REU used its data for two purposes. First, to check if Kwon’s

conjecture (Conjecture 1.1.3 above) continued to hold above x = 3.5× 106. Secondly,

to check the Hooley’s conjecture (Conjecture 1.1.2 above) numerically. In the first

aim the REU was partially successful, but at the time results were inconclusive as to

the second aim.

All of the subtlety in the following analysis flows from the fact that logarithms

arise in the curves we are trying to predict. As we have already mentioned above, and

will below show, s(x)/x or S(X)/X (as defined in either (1.2) or (1.3)) does not settle

down to an asymptotic until x > 8 × 106 for standard discriminants (X > 2 × 106

for classical discriminants). We also are restrained by x ≤ 5.2 × 107 for standard

discriminants (X ≤ 1.3 × 107 for classical discriminants). These considerations re-

strain us to looking at the data in the restricted domains 15.89 < log(x) < 17.77, or

14.51 < log(X) < 16.38. Hence, it is useless to merely consider the ax log2(x) term in

the asymptotics for s(x) and S(X). We must look at the next two lower order terms

bx log(x) and cx as well.

In the summer of 2006 it was not yet known when s(x) would settle down. We

will ignore the lower restrictions on x from the previous paragraph for the remainder

9



of this section in order to illustrate what was known by the end of the summer of

2006.

First, one would like to check Kwon’s prediction with knowledge of s(x) to x =

5.2× 107. The below graph plots Kwon’s prediction and the actual data on the same

axes.

At first glace, Kwon’s curve seems to agree with the data. However, the astute

reader will notice that the blue data line seems to just barely overtake the pink

prediction line at the large end of the available data. Expanding this region of the

graph,

10



we see that the two lines indeed diverge. Therefore, postponing a detailed analysis,

we might guess that Kwon’s prediction is close to correct but the data diverges slightly

at the end, perhaps due to natural fluctuation in the data. At the very least it suggests

that we must pay closer attention to what happens in this region and perhaps revise

our prediction.

Turning now to the case of classical discriminants and Hooley’s conjecture, we pre-

form the same operation. This time we use a simple least-squares regression instead

of checking against a conjecture with three terms as above.

Least squares predicts an asymptotic of

S(X) ∼ 0.1896...X log2(X)

for the classical discriminant case, which does not closely resemble Hooley’s theoretical

prediction

S(X) ∼ 25

12π2
X log2(X) = .2111...X log2(X).

Again, it seems that something is amiss with either our numerics or with Hooley’s

prediction.

11



2.2 Princeton

In light of the inadequacies of the above analysis of the data at hand, a closer look

was necessary after the program at Mount Holyoke had ended.

2.2.1 A Somewhat Less Näıve Approach

We now take into account a knowledge of the lower bounds 8×106 < x and 2×106 <

X mentioned at the beginning of the previous section. For the case of standard

discriminants we have

which suggests an asymptotic quite different from that predicted by Kwon. The case

of classical discriminants however, provides more confidence,

12



as the predicted asymptotic

S(X) ∼ 0.2081...X log2(X)

is quite close to Hooley’s theoretical prediction.

However, we cannot trust these two calculations too strongly. If one chooses

modestly different lower bounds on our ranges for x and X, then the coefficients

predicted vary significantly. For example, if one chooses instead 1×107 < x < 5.2×107

(log(1×107) = 16.12), then the first coefficent rises from .0818 to .0839 in the standard

discriminant case. The following section will show more clearly the behavior of s(x)

and S(X), and show from whence we derive the bounds of x > 8×106 and X > 2×106.

2.2.2 Method of Derivatives

We will use the fact that we expect s(x) and S(X) to be of the form

ax log2(x) + bx log(x) + cx + O(xγ), where γ ∈ (0, 1)

to obtain a second method of finding a, b and c. Let

f ′′h (u) =
f(u− h)− 2f(u) + f(u + h)

h2
(2.1)

be the second symmetric derivative of f(x), so named because it resembles the usual

definition of the derivative, taken twice. For f ∈ C2(R),

lim
h→0

f ′′h (u) = f ′′(u),

the usual second derivative. However, if f is a quadratic polynomial in u, a simple

calculation yields

f ′′h (u) = 2a for all h.

13



This will allow us to compute 2a for our data by taking f(u) = S(eu)/eu and u =

log(x). For sake of simplicity we take h = 1 and plot f ′′1 (log(x)) for our data (although

it seems one might be able to improve these results by allowing h to vary). We have

for standard discriminants and

for classical discriminants. In both cases, the predicted a rises steadily for x < 8×106

or X < 2 × 106, and then appears to level off after that point. It is from the

second symmetric derivative that we predict that s(x) and S(X) do not fit well to

an asymptotic before these points, and thus we derive the previously stated lower

bounds.
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We would also like to predict the next two lower order terms bx log(x) and cx in

similar fashion. Taking the average value of 1
2
f ′′1 (log(x)) = a for s(x) and S(X) from

8 million to 19.1 million and 2 million to 4.7 million, respectively, we predict that

for standard discriminants a = .0783 and for classical discriminants a = .2088. For

standard discriminants, the standard deviation of these data is σ = .0017 and for

classical discriminants, we have σ = .0045. Taking

s∗(x) = s(x)− ax log2(x)

and likewise for S(X), we predict that s∗(x)/x and S∗(X)/X are linear in log(x),

of the form

b log(x) + c + O(x−γ), where γ ∈ (0, 1).

Hence, we may apply the same trick, this time using the first derivative instead.

Define as in (2.1)

f ′h(u) =
f(u)− f(u− h)

h
(2.2)

Again, if f(u) is linear in u, then we have that

f ′h(u) = b for all h.

Taking a to be the average value from the previous analysis, we plot the f ′1(log(x)) =

b corresponding to the s∗(x) and S∗(X), and have

15



for standard discriminants and

for classical discriminants. These suggest the average values b = −1.26 for standard

discriminants and b = −2.93 for classical discriminants. However, we must take into

account that the a values we assumed to create these graphs have some uncertainty

given by their standard deviations. Taking the extreme values in the ranges .0783±

.0017 and .2088± .0045 for a, one sees that we can only expect that b = −1.26± .06

for standard discriminants and b = −2.93 ± .14 for classical discriminants. Again

assuming the average values for b, we may simply subtract these linear terms from

s∗(x) and S∗(X), which allows us to plot the predicted constant terms as well. We

have
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for standard discriminants and

for classical discriminants. By the same process we predict an even greater uncertainty

in c. We can nonetheless be confident that that c = 7.8±.6 for standard discriminants

and c = 16.9± 1.1 for classical discriminants.

2.2.3 Predictions and Errors

In light of the above arguments, we make the following two conjectures.

Conjecture 2.2.1. For the class numbers h(d) of standard positive discriminants d

17



we have

s(x) =
∑
d≤x

h(d) = (0.0783± .0017)x log2(x)− (1.26± .06)x log(x) + (7.8± .6)x + o(x)

(2.3)

Conjecture 2.2.2. For the class numbers h(D) of classical positive discriminants D

we have

S(X) =
∑
D≤X

h(D) = (0.2088±.0045)X log2(X)−(2.93±.14)X log(X)+(16.9±1.1)X+o(X)

(2.4)

Clearly, these two results are highly tentative, however we are encouraged by the

resemblance of Conjecture 2.2.2 to Hooley’s conjecture 1.1.2. As mentioned before,

this is the first time numerics and theory have predicted the same constant for this

asymptotic.

Also of note is that we have relaxed the error terms to o(x) as opposed to Kwon’s

O(xγ). With such wide ranges for c in the above analysis, any attempt at investigating

error terms is highly speculative. Nonetheless, if one chooses the average values in

the above ranges the error terms can be plotted. For the first conjecture, we have

and for the second we have

18



From these graphs, it is impossible to predict what the decay of these terms might

look like. Indeed, they do not appear to decrease at all within the range of our data,

but appear to merely be bounded by |error| < .005 or |error| < .01, respectively.

However it is notable that even though we do not have confidence of more than ±.6

or ±1.1 in c, the error terms are bounded below .005 for standard discriminants and

below .01 for classical discriminants through the range of our data if we pick the

average values.
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Chapter 3

Hooley’s Heuristic

Hooley’s Heuristic method for computing the asymptotic on S(X) relies entirely on

the class number formula (1.1). For positive discriminants D the formula has three

main components, h(D), log(εD), and LD(1). As LD(1) = O(log(D)), the formula

links log(εD) and h(D) together in such a way that knowledge of either one restricts

the other into a fairly narrow range. Therefore, Hooley’s method works entirely with

the units εD [Hoo].

3.1 A First Method for Counting Units

For any classical discriminant D, the fundamental unit is given by the fundamental

solution to the Pellian equation

T 2 −DU2 = 1, (3.1)

Where

εD = T +
√

DU.

All other units ε′D and all other solutions to (3.1) are powers of this εD. In order

20



to develop a sum over all h(D), as is Hooley’s aim, we must develop a method for

counting fundamental solutions to the Pellian equation.

(3.1) is a inhomogeneous equation in three variables, T , D, and U , the fundamental

solutions of which we would like to sum subject to some conditions. Clearly one would

like the condition D ≤ X, however, there are still an infinite number of solutions to

(3.1) in this range (due to derived solutions), so we must further restrict ourselves

by insisting that εD ≤ D
1
2
+α. The 1

2
in this condition reflects the lower bound on εD

from the introduction. Further, to ensure that we do not obtain any trivial solutions

from the case that D is a square, we also insist that U ≥ 1. Hooley therefore defines

G(X, α) =
∑
D≤X

ε′D≤D1/2+α

1 (3.2)

Where the sum is over all solutions to (3.1), fundamental or derived. Our first

impulse may be to develop a method for finding εD for each D and then sum over

the D with respect to the above conditions. Although εD can be found for arbitrary

D by a method of continued fractions, this is a technique that does not lend itself to

this problem.

Instead, we fix U and solve over possible solutions for T in the range prescribed by

the conditions of the sum (3.2). We take Y1 = (A(U)U)
1
α , where A(U) is a constant

depending on U but obeying 2 < A(U) < 3, Y2 = (Y1U
2 + 1)

1
2 and Y3 = (xU2 + 1)

1
2 .

For Xα = 1
2
(Xα −X−1−α) we have,

G(X,α) =
∑

1≤U≤Xα

∑
DU2=T 2−1
Y2≤T≤Y3

1 (3.3)

Taking the inside sum, we use the multiplicative structure of solutions once U has
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been fixed, ∑
DU2=T 2−1
Y2≤T≤Y3

1 =
∑

T 2−1≡0(U2)
Y2≤T≤Y3

1 =
∑

Ω2−1≡0(U2)
0<Ω≤U2

∑
T≡Ω(U2)
Y2≤T≤Y3

1

=

(
Y3 − Y2

U2
+ O(1)

)
ρ(U2),

where ρ(λ) is the number of distinct roots of Ω2 ≡ 0 mod λ.

ρ(U2) is multiplicative and hence we can write a Dirichlet series for it and evaluate

it via euler product. Perron’s formula then yields an estimation for partial sums of

ρ(U2), and we obtain Hooley’s first

Theorem 3.1.1.

G(X, α) =
4α2

π2
X

1
2 log2(X) + O(X

1
2 log(2X) + O(Xα log(2X))

uniformly for X ≥ 1 and 0 ≤ α ≤ 1.

Because of the lower bound on εD, we have that all units with ε′D < D must be

fundamental. Hence, for α ≤ 1
2

we also have

Corollary 3.1.2.

Γ(X, α) ∼ 4α2

π2
X

1
2 log2(X), (3.4)

where Γ(X, α) is defined as G(X, α) except that we restrict ourselves to fundamental

units.

Clearly, the third term in the above equation is troublesome for all but very small

α. It arises from the O(1) term in the above computation of G(X, α). Also, G(X, α)

has the defect of being a sum over all units as opposed to merely the fundamental

ones. We are instead more interested in the sum Γ(X,α). Thus to get results which

lend themselves more meaningfully to the conjecture we are aiming at, we take a

slightly different approach.
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3.2 A Second Method for Counting Units

In the previous section we held U fixed and then counted over T which gave solutions

to the congruence T 2 − 1 ≡ 0 mod U2, relying on the multiplicative structure of

ρ(U2) and the bounds Y2 and Y3. We now different approach for counting solutions

to T 2 − 1 ≡ 0 mod U2.

Factoring the equation, we see that each solution to the above equation for odd

U corresponds to a choice of U1, U2 such that

T − 1 ≡ 0 mod U2
1 and T + 1 ≡ 0 mod U2

2 (3.5)

where

U = U1U2, (U1, U2) = 1. (3.6)

Because we have (U1, U2) = 1, each such factorization yields a solution to (3.5)

and hence a unique solution to (3.1). This fact reflects the multiplicativity of our ρ(λ)

from the previous method. Given the relaxation of the bounds Y2 ≤ T ≤ Y3 to the

bounds T ≤ x
1
2 U and T > 1, we impose the restrictions of factorizations U = U1U2

that U2
1 ≤ T − 1 ≤ x

1
2 U − 1 and U2

2 ≤ T + 1 ≤ x
1
2 U + 1. Dropping the ±1 from the

above allows us to impose the conditions

U1 ≤ x
1
2 U2 and U2 ≤ x

1
2 U1. (3.7)

We have a slightly modified construction for even U . This reflects the fact that

T 2 − 1 ≡ 0 mod U2 has 2 solutions if U is a power of an odd prime but 4 solutions

if U is 2n for n ≥ 2. Correspondingly, we choose

T − 1 ≡ 0 mod 2U2
1 and T + 1 ≡ 0 mod 2U2

2 (3.8)
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where

U = 2U1U2, (U1, U2) = 1. (3.9)

And one solution to the above set of congruences yields one solution to T 2−1 ≡ 0

mod 1
2
U2. The have likewise that 2U2

1 ≤ T − 1 ≤ 2x
1
2 U − 1 and 2U2

2 ≤ T + 1 ≤

2x
1
2 U + 1. This again yields the restrictions (3.7), however with a slightly different

meaning for U1, U2.

In essence, what we have done here is developed a method of counting solutions to

T 2 − 1 ≡ 0 mod U2 in terms of factorizations of U while at the same time imposing

bounds on T . We have thus created an analogue for ρ(λ) from the previous section.

We define likewise r(U2) to be the number of solutions to (3.6) and (3.7) if U is odd,

and twice the number of solutions to (3.9) and (3.7) if U is even. Therefore, we would

like to investigate the sum

K(X, α) = x
1
2

∑
1≤U≤Xα

r(U2)

U
(3.10)

to verify its resemblance to G(x, α). By splitting (3.10) into even and odd cases,

and using the möbius function to remove the relatively prime condition we can eval-

uate (3.10). For the odd part we get

X
1
2

∑
m≤X

1
2
α

modd

µ(m)

m2

∑
1≤U1U2≤Xα

m2

U1≤x
1
2 U2, U2≤x

1
2 U1

Uodd

1

U1U2

∼ 1

π2

(
α− 1

4

)
X

1
2 log2(X), (3.11)

where the asymptotic is obtained by integrating over the appropriate region in the

U1-U2 plane. In similar fashion we also evaluate the even case and combining the two

obtain
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K(X,α) ∼ 4

π2

(
α− 1

4

)
X

1
2 log2(X). (3.12)

This does not seem to resemble Hooley’s theorem 1. The discrepancy is due to

the fact that this method of counting units misses the derived solutions. Indeed if we

take tr +
√

Dur = (ts +
√

Dus)
2 where r = 2s, we have

tr = t2s + Du2
s and ur = 2tsus

giving

tr − 1 = Du2
s and tr + 1 = t2s.

This bares a striking resemblance to (3.8) and (3.9). Hence, we see that for derived

solutions of even order we take U1 = us and U2 = ts. As a result, we have that
√

DU1

is almost equal to U2. Given this fact, we observe that restricting our D to range

between x
log2(x)

≤ D ≤ x will not affect the asymptotic estimate, and hence we have

roughly

X
1
2 U1

log(X)
≤ U2 ≤ X

1
2 U1. (3.13)

Hence, derived solutions of even order lie just within the region given by (3.7).

If we sum over the region (3.13) instead of that prescribed by (3.7), one finds that

the corresponding series G′(X, α) is O(X
1
2 log(X) log(log(X))). From theorem 1, it

is possible to show that for α > 7
2
, G′(X, α) is bounded below by a function that is

O(X
1
2 log2(X)), and hence K(X, α) cannot possibly take account of derived solutions

of even order.

A similar but much more complicated process shows that K(X,α) cannot take

account of derived solutions of odd order either. It as well relies on the fact that

removal of the region in which derived solutions are found will not affect the asymp-
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totic estimate of K(X, α). Therefore, we have constructed a method of counting

fundamental solutions alone.

3.3 Phase Transitions

One might expect that Γ(X, α) would be of the from of (3.12) for all α > 1. However,

a more detailed analysis shows that the form of this sum changes as α increases.

K(X, α) actually excludes more than the derived solutions than we would like. It also

serves to exclude fundamental solutions which are derived from cubes of solutions to

the equation t2 − Du2 = 4. If we let ηD = t +
√

Du, then in the case that D ≡ 5

mod 8 we have that

εD =

(
1

2
ηD

)3

,

and the εD is fundamental. The counting process used to construct K(X, α) excludes

these solutions for the same reason it excludes cubes of any εD. Let Γ∗(X, α) be the

contribution to Γ(X,α) from D not of the above form. Let ∆(X,α) be the number of

non-square determinants D not exceeding X for which ηD ≤ 2D
1
2
+α. We then have

Γ(X, α) = Γ∗(X,α) + ∆

(
X,

1

3
(α− 1)

)
.

It appears that no other types of derived solution affects the counting process.

Derived solutions corresponding to solutions to the equations t2 −Du2 = −1 or ± 2

occur for so few discriminants as to not affect the asymptotic. Therefore, we expect

that

Γ∗(X, α) ∼ K(X, α) ∼ 4

π2

(
α− 1

4

)
X

1
2 log2(X)

By minor changes to theorem 1, we have
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∆(X, α) ∼ 1

2
X

1
2

∑
1≤U≤Xα

Uodd

ρ(U2)

U
∼ α2

2π2
X

1
2 log2(X)

for 0 < α ≤ 1
2
, but in analogy to K(X,α) hypothesize that

∆(X, α) ∼ 1

2
X

1
2

∑
1≤U≤Xα

Uodd

r(U2)

U
∼ 1

2π2

(
α− 1

4

)
X

1
2 log2(X)

for α ≥ 1
2

in analogy with K(X, α).

Seeing no other reasons for the form of Γ(X, α) to change, Hooley establishes the

first of his main conjectures,

Conjecture 3.3.1. For any given α > 1
2
, we have

Γ(X, α) ∼ B(α)X
1
2 log2 X,

as X −→∞, where

B(α) =



4
π2

(
α− 1

4

)
, if 1

2
< α ≤ 1,

4
π2

(
α− 1

4

)
+ 1

18π2 (α− 1)2, if 1 ≤ α ≤ 5
2
,

4
π2

(
α− 1

4

)
+ 1

6π2

(
α− 7

4

)
if α > 5

2
.

(3.14)

3.4 Leap of Faith

In what precedes, Hooley’s arguement is not rigorous largely because he assumes

but cannot prove that there are more phase transitions for α > 5
2
. However, in

formulating his conjecture for the asymptotic on class numbers, this assumption is

minor in comparison to his next.

At the end of this analysis, once we have introduced the sum over h(D), we would

like to be able to remove the condition on the size of units εD ≤ D
1
2
+α. However, we
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cannot do this by merely allowing α →∞ in the above conjecture because for any α

fixed, there are infinitely many units with εD > Dα. However,

lim sup
D→∞

log(log(εD))

log(D)
=

1

2

so that if we replace D
1
2
+α in the definition of Γ(X, α) with a function of the type

f(D) = eDβ
we can hope to encompass all units by letting β → 1

2
at a later time.

To assume that his previous methods hold with such rapidly increasing functions

of D is Hooley’s major leap of faith in his heuristic. If f(D) is some smooth increasing

function we define Γf (X) to be the number of fundamental solutions to T 2−DU2 = 1

for which D < x and εD ≤ f(D). We define g(D) with an eye towards ∆(X,α) to

be g(D) = (2D−1f(D))
1
3 , and f−1 and g−1 to be the inverse functions of f and g

respectively. Hence, we are led to the formula

Γf (X) ∼ X
1
2

∑
U≤f(X)

r(U2)

U
+

1

2

∑
U≤g(X)

Uodd

r(U2)

U

−
∑

U≤f(X)

r(U2)(f−1(U))
1
2

U
− 1

2

∑
U≤g(X)

Uodd

r(U2)(g−1(U))
1
2

U

∼ 4

π2
X

1
2 log(X) log(f(X)X− 1

4 ) +
1

2π2
X

1
2 log(X) log(g(X)X− 1

4 )− Σ (3.15)

where the two terms with f−1 and g−1 derive from the next lower order term. For

functions f which increase more rapidly than any power of D, these terms affect the

asymptotic, but if f is bounded by some power law, they may be ignored. These

terms derive from the −Y3

U2 ρ(U2) term in the formula preceding theorem 3.1.1. For

f(D) = eDβ
, we can actually compute Σ and find that

Γf (X) ∼ 25

6π2(1 + 2β)
X

1
2
+β log(X). (3.16)
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3.5 From Units to h(D)

With a machinery for summing over fundamental units in hand, we are able to proceed

directly to the sum S(X). We do this by attaching a weight to each fundamental

unit. Define P (X, α) the analogous sum to Γ(X, α), with weight LD(1). Define Pf (X)

analogous to Γf (X) and if f(D) = eDβ
, define P ∗

β (X) = Pf (X). The calculation of

P (X, α) is long and technical, so we omit most of the details, which can be found in

Hooley’s paper. As the important ideas in Hooley’s heuristic have occurred previously,

we instead go for the general ideas.

When α < 1
2
, we begin

P (X,α) =
∑

1≤U≤Xα

∑
DU2=T 2−1
Y2≤T≤Y3

LD(1).

Next, taking Y4 = X
1
4
+δ, with δ small, we have the estimate

LD(1) =
∑

m≤Y4
m odd

(
D

m

)
1

m
+ O(X− δ2

2 ).

We have then

P (X,α) =
∑

1≤U≤Xα

∑
DU2=T 2−1
Y2≤T≤Y3

∑
m≤Y4
m odd

(
D

m

)
1

m
+ O(X− δ2

2 Γ(X, α)).

Taking

I∗(Y2, Y3, U) =
∑

DU2=T 2−1
Y2≤T≤Y3

∑
m≤Y4
m odd

(
D

m

)
1

m
,

we have

P (X,α) =
∑

1≤U≤Xα

I∗(Y2, Y3, U) + O(X
1
2
− δ2

2 log2(2x))
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= P ∗(X, α) + O(X
1
2 log(2X))

by the first section of chapter 3 and theorem 1. Next compute I∗(Y2, Y3, U).

I∗(Y2, Y3, U) =
∑

m≤Y4
m odd

1

m

∑
DU2=T 2−1
Y2≤T≤Y3

(
D

m

)

=
∑

m≤Y4
m odd

1

m

∑
Ω2−1≡0(U2)

0<Ω≤U2

∑
Y2≤Ω+nU2≤Y3

(
U2n2 + 2Ωn + Ω2−1

U2

m

)

=
∑

m≤Y4
m odd

1

m

∑
Ω2−1≡0(U2)

0<Ω≤U2

∑
0<l≤m

(
U2l2 + 2Ωl + Ω2−1

U2

m

) ∑
Y2U−2−ΩU−2≤n≤Y3U−2−ΩU−2

n≡l mod m

1

=
∑

m≤Y4
m odd

1

m

∑
Ω2−1≡0(U2)

0<Ω≤U2

(
Y3 − Y2

U2m

∑
0<l≤m

(
U2l2 + 2Ωl + Ω2−1

U2

m

)
+ O(m)

)

=
∑

m≤Y4
m odd

1

m

∑
Ω2−1≡0(U2)

0<Ω≤U2

(
Y3 − Y2

U2m
Ψ(m; U, Ω) + O(m).

)
(3.17)

Ψ(m; U, Ω) is multiplicative in m, therefore to compute the above sum it suffices to

compute it on prime powers. Checking cases reveals that Ψ(m; U, Ω) actually has no

Ω dependence, and hence we re-designate it Ψ(m; U). We hence reduce the above to

I∗(Y2, Y3, U) =
(Y3 − Y2)ρ(U2)

U2

∑
m≤Y4
m odd

Ψ(m; U)

m2
+ O(ρ(U2)

∑
m≤Y4

1)

=
(Y3 − Y2)ρ(U2)

U2

∑
m≤Y4
m odd

Ψ(m; U)

m2
+ O(X

1
4
+2δ) (3.18)

Using the euler product to compute the inner sum here yields a constant and multi-

plicative function of U which we designate B and Φ(U) respectively. We thus have
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P (X, α) = B
∑

1≤U≤Xα

(Y3 − Y2)ρ(U2)

U2
Φ(U) + O(X

1
4
+2δ). (3.19)

Computing the Dirichlet Series of ρ(U2)Φ(U) and utilizing Perron’s formula to

obtain a partial sum, we finally have

P (X, α) ∼ BX
1
2

∑
1≤U≤Xα

ρ(U2)Φ(U)

U
∼ 4α2

π2
X

1
2 log2(X) (3.20)

We now make the same leap of faith as in section 3.4 and hypothesize that

P ∗
β (X) ∼ 25

6π2(1 + 2β)
X

1
2
+β log(X) = P †

β(X), say. (3.21)

Using integration by parts, the Stieltjes integral, and the fact

lim sup
D→∞

log(log(εD))

log(D)
=

1

2
,

we obtain

S(X) =
∑
D≤X

2
√

DLD(1)

log(εD)
∼ 2

∫ X

3
2

∫ 1
2

0

y
1
2
−β dP ∗

β (y).

Substituting P †
β(X) for P ∗

β (X), we have

25

3π2

∫ X

3
2

∫ 1
2

0

y
1
2
−β

∂2P †
β(y)

∂β∂y
dβ dy ∼ 25

6π2

∫ X

3
2

∫ 1
2

0

log2(y) dβ dy ∼ 25

12π2
X log2(X).

(3.22)

We therefore have

Conjecture 3.5.1. As X →∞, we have

∑
D≤X

h(D) ∼ 25

12π2
X log2(X).
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Chapter 4

Conclusion

The main idea in Hooley’s heuristic is to construct a sum that counts fundamental

units εD. We obtain this sum with some bound on εD, by summing solutions of

T 2 −DU2 = 1 in U and T as opposed to summing over D. Hooley proves his results

for only very restrictive bounds on εD. However, by assuming that the form of his sum

holds for very large bounds, he collects all fundamental units in his sum. Weighting

each one by the class number associated with that discriminant D provides a heuristic

for S(X).

Because of the delicate nature of his techniques, and his unjustified assumptions,

one might at first be skeptical of this result. There could easily be an extra set of

fundamental solutions that our counting process excludes by accident, or our second

method for counting fundamental units could change significantly when εD is allowed

to grow exponentially. However, the numerical results contained in this paper lend

quite a bit of confidence to his formerly unchecked conjecture.

There are multiple ways in which I would like to further develop the work presented

in this senior thesis. First, because our numerics necessitated a study of lower order

terms in the asymptotic expansion of S(X)/X, one would like to be able to derive

these lower order terms from the theory contained in Hooley’s paper. If one were able
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to predict these terms based on theory alone, it would lend significant confidence to

his conjecture. Moreover, If the exact asymptotic to 3 terms was known, we would be

able to more meaningful conclusions about the error terms o(x) from section 2.2.3.

Secondly, Hooley’s work is defined for classical discriminants, which only represent

half of the possible standard discriminants. One would also like to use the same

technique as Hooley to predict an asymptotic for the slightly more general case of

s(x), and see it agree with the numerics presented for that case herein. Doing so

would formulate the important conjecture in the modern terminology, establishing it

for the work of future generations of mathematicians.
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