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Reminders from last time

Set-up

F orthonormal basis of Sk(lo(q)),

(m,n) =Y v¢(m)

fes

We want to estimate the sum
ZZ n)A(rm, sn)F(m, n),

where A(m, n) =Y ¥r(m)ir(n) and F smooth test function
supported in [M,2M] x [N, 2N] with FU) <« M~IN—J.
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Reminders from last time

Set-up
F orthonormal basis of Sk(lo(q)),
(myn) = wbe(m
fes

We want to estimate the sum
ZZ n)A(rm, sn)F(m, n),

where A(m, n) =Y ¥r(m)ir(n) and F smooth test function
supported in [M,2M] x [N, 2N] with FU) <« M~IN—J.

Theorem 2
Assume (g, rs) = 1 and M, N < g'*¢. Then

B(r,s) < q'la(r,s)(rs) "2 + qi2(rs) ] (MN)>
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Reminders from last time

Petersson formula

For now #(s) = #(1,s). Using Petersson formula we got

B(s) = (k—1)qT(0) +2ri*(k—1)g > ¢ >T(o),
c=0 mod g

with

T(0) = 3 r(sn)r(n)F(sn, n) < (’VLN> " g,

n

T(c)= CZZT(I‘H)T(H)S(H’I,SFI; ¢)Jk-1 <47r\/cﬁ> F(m,n).
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Reminders from last time

Transforming T(c) into Ramanujan sums
By Jutila Poisson summation T(c) = T*(c)+ T (¢) + T*(c) where

T*(c) = Z (n)S(0, sn; ¢)G*(n) < (c,s)MNC,

ZZ 5(0,sn + m; c)GE(m, n)

where
G (x,y) = —277/ <4W‘ﬁ> <47r‘£57y> F(x,y)

and G is similar with 4Ky replacing —27Yp.
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Reminders from last time

Transforming T(c) into Ramanujan sums
By Jutila Poisson summation T(c) = T*(c)+ T (¢) + T*(c) where

T*(c) = Z (n)S(0, sn; ¢)G*(n) < (c,s)MNC,

ZZ 5(0,sn + m; c)GE(m, n)

where

G (x,y) = —277/ <4W‘ﬁ) <47r‘£57y> F(x,y)

and G is similar with 4Ky replacing —27Yp.
Split

T=(c) =) _5(0,h,c)T;(c)
h
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End of the proof of Theorem 2

A theorem from DFI: A quadratic divisor problem

Assume f is a smooth function on RT x R* satisfying

~—

Xyl F0) (x, y) < (1 + ;) - (1 + %)71 piti, (1

Define Ay = 27 + log % and

1 < (ab,w)
Nabh(x,y) = 25 Z "
w=1

Suppose h#0, a,b>1 and (a,b) = 1. Then

S(h,0; w)(logx — Aaw)(logy — Apw)-

(e.e]
> w(m)r(n)f(am, bn) = / f(x, £x & h)Aapn(x, £x £ h)dx
am=tbn=h 0

+ O(P#(X + Y)#(XY)3 o).
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End of the pr

Evaluation of T;"(c)

sn+ m = 0 has no solution in positive integers so T0+(c) =0.
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End of the proof of

Evaluation of T;"(c)

sn+ m = 0 has no solution in positive integers so TS'_(C) = 0. For now
leave T, (c) as it is.
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End of the proof of Theorem 2

Evaluation of T;"(c)

sn+ m = 0 has no solution in positive integers so T(T(c) = 0. For now

leave T, (c) as it is. For h # 0, use Theorem 1 with the test function
fE(x,y) = G* (x, %) satisfying (1) with Y = sN, P =1+ vsMN/c,
X =c?P’M~1t> Y.
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End of the proof of Theorem 2

Evaluation of T;"(c)

sn+ m = 0 has no solution in positive integers so T(T(c) = 0. For now
leave T, (c) as it is. For h # 0, use Theorem 1 with the test function
fE(x,y) = G* (x, %) satisfying (1) with Y = sN, P =1+ vsMN/c,
X=c?P’M1t>Y,

Truncating the series defining Ap(x,y) to w < g, we get

T ()= > (SWW)S(O h w)Y (h)

1<w<gq

+ O((1 + ||/ X)"2P4(sN) Mc)

where

) =-2x [ [Tloglh+ )~ Aulllogy — o
Yo ( \/W) k-1 (4F\/@> F(x, y)dxdy.

and 5|m||ar|y for T+ Wlth —27'Yy replaced with 4Kj.
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End of the proof of Theorem 2

A Poisson-type lemma

Lemma 10.1

Let f be a C? function on R such that (1 + x?)f()(x) < 1. Then

> 5(0, b €)S(0, b w)F(h) = p((c,w)) > 'F <u(c, W)> |
h

cw
u

’ . c . cw o
Here > means the summation is restricted to <u, m) =1

Idea: Split the summation in progressions h = a mod [c, w]| and apply
Poisson summation to get sums involving

Z 5(0,2; ¢)S(0, a; w)e (—[C?L:V]> ,

a mod [c,w]

which counts the number of solutions to a certain congruence condition.
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End of the proof of Theorem 2

Evaluation of T=(c)
By the evaluation of T,

T () =¢()Ty () + > > S(0,h;w)S(0,h;c)Y(h)

1<w<q h#0

+ 0 <P%(5N)%c2+6) :
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End of the proof of Theorem 2

Evaluation of T=(c)
By the evaluation of T,",

T () =¢()Ty () + Y > S(0,hw)S(0,h;c)Y(h)
1<w<q h#0
+0 <P%(5N)%c2+6) :
Add and subtract the contribution from Y(0) then apply Lemma 10.1 for
Y(h) to get
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End of the proof of Theorem 2

Evaluation of T=(c)
By the evaluation of T,",

T () =¢()Ty () + > > S(0,h;w)S(0,h;c)Y(h)

1<w<q h#0
+0 <P%(5N)%c2+6) :
Add and subtract the contribution from Y(0) then apply Lemma 10.1 for
Y(h) to get

T() =T (@) —90) 3 ww) & v(0)

w2
1<w<gq
£ Y eempBR YV (HEM)
1<w<gq u

+0 (P%(s/v)%c2+f) .

and 5|m|IarIy for T+ without the term commg from h = 0.
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End of the proof of Theorem 2

Evaluation of #(s)

Putting everything together, #(s) splits as
® the contribution from T(0) (trivial bound),
® the contribution from T*(c¢) (trivial bound),
® the contribution from T~ (c) + T*(c).
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End of the proof of Theorem 2

Evaluation of #(s)

Putting everything together, #(s) splits as
® the contribution from T(0) (trivial bound),
® the contribution from T*(c¢) (trivial bound),
® the contribution from T~ (c) + T*(c).
The contribution from T~ (c¢) + T (c) splits itself as
® the contribution T (c) coming from h =0,
® the contribution from Y/(0) in T~ (c)
® the “Fourier transform” contribution

® the error term coming from Theorem 1.
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End of the proof of Theorem 2

Dealing with the error term

Subtlety: the error term O (P%(SN)%C}H) in the evaluation of T¥(c) is
too weak for large ¢ (recall P =1+ vsMN/c).
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End of the proof of Theorem 2

Dealing with the error term

Subtlety: the error term O (P%(SN)%C}H) in the evaluation of T¥(c) is
too weak for large ¢ (recall P =1+ vsMN/c).
Use a result of Deshouiller-lwaniec that implies the original sum

> =0 mod g ¢ 2T*(c) can be truncated to ¢ < C at a negligible cost for
suitable C. So only sum the error term for ¢ < C.
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End of the proof of Theorem 2

Dealing with the error term

Subtlety: the error term O (P%(SN)%C}H) in the evaluation of T¥(c) is

too weak for large ¢ (recall P =1+ vsMN/c).

Use a result of Deshouiller-lwaniec that implies the original sum

> =0 mod g ¢ 2T*(c) can be truncated to ¢ < C at a negligible cost for
suitable C. So only sum the error term for ¢ < C.

Sum the main term in the expression (2) that we obtained for T~ (c) (and
its analogue for T (c)) for all ¢ (not just ¢ < C), at the price of an
admissible error term.

Félicien Comtat (Queen Mary University of L| Moments and Amplification Il March 3rd 2021 10/23



End of the proof of Theorem 2

A summation lemma

Lemma 11.1

Let £ be a smooth function compactly supported on R™. Then

R . £ = gy | 100
+0 (# / IF(x)] log (1 + g) dx>

q)—qH(1+ >

pla

Idea: 3 —o mod g E2F(c) = 3oy X0 3, F(nld, q]) then apply
Euler-Maclaurin summation formula

where
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End of the proof of Theorem 2

The contributions from T, (c) and Y/(0)

The contribution from T, (c) is bounded by g >y ,con T(sn)7(n)|Q(n)|
where

Q(n) = Z SOC(E)G_(sn, n)

c=0 mod g
_ /O T volntvaoa(dnyam) S G(c)F(cRER, nyede

c=0 mod q
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End of the proof of Theorem 2

The contributions from T, (c) and Y/(0)

The contribution from T, (c) is bounded by g >y ,con T(sn)7(n)|Q(n)|

where

Q(n) = Z SOC(E)G_(sn, n)

c=0 mod g
_ /O T volntvaoa(dnyam) S G(c)F(cRER, nyede

c=0 mod q

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the
error term, handled by estimates for Bessel functions.
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End of the proof of Theorem 2

The contributions from T, (c) and Y/(0)

The contribution from T, (c) is bounded by g >y ,con T(sn)7(n)|Q(n)|

where

Q(n) = Z SOC(E)G_(sn, n)

c=0 mod g
_ /O T volntvaoa(dnyam) S G(c)F(cRER, nyede

c=0 mod q

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the
error term, handled by estimates for Bessel functions.
The contribution from Y'(0) is dealt with similarly.
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End of the proof of Theorem 2

End of the Proof of Theorem 2

® The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of Ky and Yy, and is
evaluated explicitly, only leaving Jx_1.
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End of the proof of Theorem 2

End of the Proof of Theorem 2

® The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of Ky and Yy, and is
evaluated explicitly, only leaving Jx_1. The rest is similar: use
Euler-Maclaurin, then orthogonality of Bessel J,_1 with cos to only
get the error term. The latter is an oscillatory integral that can be
dealt with.
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End of the proof of Theorem 2

End of the Proof of Theorem 2

® The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of Ky and Yy, and is
evaluated explicitly, only leaving Jx_1. The rest is similar: use
Euler-Maclaurin, then orthogonality of Bessel J,_1 with cos to only
get the error term. The latter is an oscillatory integral that can be
dealt with.

1
® T(0), T,, Y(0) and the FT contribute < (@)2 g'*t¢. Summing
the error term from Theorem 1 gives < q%“s%(MN)%. Adding all

up gives Theorem 2 in the case r = 1 when s is not too big. For
large s, directly use Corollary 1.
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End of the proof of Theorem 2

End of the Proof of Theorem 2

® The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of Ky and Yy, and is
evaluated explicitly, only leaving Jx_1. The rest is similar: use
Euler-Maclaurin, then orthogonality of Bessel J,_1 with cos to only
get the error term. The latter is an oscillatory integral that can be
dealt with.

® T(0), T,, Y(0) and the FT contribute < (@)% g'*t¢. Summing
the error term from Theorem 1 gives < q%“s%(MN)%. Adding all
up gives Theorem 2 in the case r = 1 when s is not too big. For
large s, directly use Corollary 1.

® To relax the condition r = 1, take .% to be a Hecke eigenbase and
use the Hecke relations to turn 7(m)7(n)w¢(rm)ip(sn) into a sum
involving terms of the form 7(m')7(n")y¢(m')(s'n’) to finally get

B(r,s) < qla(r,s)(rs) "2 + qi2 (rs)¢](MN)?
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Amplification

First corolloary

From now on assume .% is a Hecke eigenbase and denote by A¢(¢) the
eigenvalue of Ty on the eigenfunction f.

Corollary 2

Let g be a smooth function supported on [M,2M] with M < g**€ such
that g(i) < M~'. Let ¢ coprime with g. Then

2
< q°(qt™2 +quei)M

5 (0

feF

> r(myir(m)gm)
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Amplification

First corolloary

From now on assume .% is a Hecke eigenbase and denote by A¢(¢) the
eigenvalue of Ty on the eigenfunction f.

Corollary 2

Let g be a smooth function supported on [M,2M] with M < g**€ such
that g(i) < M~'. Let ¢ coprime with g. Then

5 (0

feF

2

(m)vs(m)g(m)| < q(ql™2 + qi2¢3)M

Proof: Expand the square and use that

T(MAr(O)r(n) = > pla)r(a2)m(n)r(avarn’),

ajarn’=n
apaiaz =/

then use Theorem 2.
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Amplification

Mollification

Corollary 3

For any complex numbers ¢; with (4, q) = 1 we have

2
1 3
SN ()RS T(m)de(m)g(m)| < g (glicl3 + g2 L3 c[3)M
feZ m
where

*

Ae(c) =D cde(0).

I<L
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Amplification

Mollification

Corollary 3

For any complex numbers ¢; with (4, q) = 1 we have

> IAr(o)?

fez

2

Z T(m)y(m)g(m)

where .

Ae(c) =D cde(0).

I<L

Proof: Expand |Af(c)|? and use

Ar(mAe(n) = 3 A (%)

d|(m,n)

then CoroIIary 2.
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11 3
< q%(qllc||3 + g L2 | c|[F)M

15/23



Amplification (1/2)

Corollary 4

Let f € .%#. Then we have

> r(mye(m)g(m) < MEq*e

m

with 0 = 96 OF 0 = 5 if we assume

S0 > gL (3)

<L
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Amplification (1/2)

Corollary 4

Let f € .%#. Then we have

> r(mye(m)g(m) < MEq*e

m

with 0 = %, or 6 = % if we assume
> X)) > qcL (3)
<L

Proof: Drop all but one term in Corollary 3 and make A¢(c) as large as
possible. If (3) holds, take ¢, = A¢(¢) and L = q%
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Amplification

Amplification (2/2)

If we don't want to assume (3), use the trick A\r(p)? — A\r(p?) =1 (for p
Ar(0) if £ < L2 is prime,

prime coprime to q) so take ¢, = ¢ —1 if £ < L is square of a prime,
0 otherwise.

Then by the PNT As(c) ~ 2L3(log L),
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Amplification

Amplification (2/2)

If we don't want to assume (3), use the trick A\r(p)? — A\r(p?) =1 (for p
Ar(0) if £ < L2 is prime,

prime coprime to q) so take ¢, = ¢ —1 if £ < L is square of a prime,
0 otherwise.

Then by the PNT As(c) ~ 2L3(log L),

By Deligne’s bound (Ramanujan Conjecture) [A¢(p)| < 2

lellz = 32 p<.(1+ AZ(p)) < 5A¢(c) and

[cllh = > < (1 +[Ar(p)]) < 3Af(c) so taking L = g2 gives the result.
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Subconvexity

Set-up

Let f be a newform for Sk(Io(q)) of weight k > 2.
Le(s) =D Ar(mn~,
n=1

where A¢(n) = ¢(n)/1¢(1).
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Subconvexity

Set-up

Let f be a newform for Sk(Io(q)) of weight k > 2.
Le(s) =D Ar(m)n~>,
n=1

where A\¢(n) = 1r(n)/1¢(1).

It satisfies the functional equation

We(s) = iKepWe(1 — s) (4)
where VA P
_ (V4 —
Ve(s) = (2%) r <s+ 5 > L¢(s)
and e = +1 is the eigenvalue of the involution given by the action of
[ *1] on f
q .
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Subconvexity

Set-up

Let f be a newform for Sk(Io(q)) of weight k > 2.

= i)\f(n)n_s,
n=1

where A\¢(n) = 1r(n)/1¢(1).

It satisfies the functional equation

We(s) = iKerWe(1 — ) (4)

Ve(s) = (;/j)sr< + k2> Lr(s)

and e = +1 is the eigenvalue of the involution given by the action of
[¢ ] onf.

1
ConveX|ty bound: Lf( ) < g log(q) for Re(s) = 3
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Subconvexity

Subconvexity

On Re(s) = 3,

Le(s) < q2°*,

where 6 is as in Corollary 4. All the derivatives L(fj) satisfy the same bound.

Félicien Comtat (Que
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Subconvexity

Subconvexity

On Re(s) = 3,

Le(s) < q2°*,

where 6 is as in Corollary 4. All the derivatives L

(fj) satisfy the same bound.

1
X@.

=
N—=

If we assume (3) then 6
Otherwise 6 = 7 — % X

8= |

1
7
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Subconvexity

Subconvexity

On Re(s) = 3,

Lf(S) < q%9+e
where 6 is as in Corollary 4. All the derivatives L(fj) satisfy the same bound.

1

no 60"

X

If we assume (3) t
Otherwise 6 =

=
N—=

e =
L1
2

1_
7

96"
Strategy of the proof: relate L2(s) to a Rankin-Selberg convolution L ¢(s)

then use Corollary 4 and an approximation argument to get an upper
bound.
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Subconvexity

Relating L%(s) to L,¢(s)

If (n,q) =1 we have Ar(n)yhr(m) = 3_41(m ) ¥F (Z2) . so
>ty e(n)n= = G(s)Hr(s) where Gr(s) = 3 e e (n)n ™

He(s)= Y Me(mn—* =JJ(@ = Ae(p)p~ +p>) .
(n,q)=1 ptq
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Subconvexity

Relating L%(s) to L,¢(s)

If (n,q) =1 we have Ar(n)yhr(m) = 3_41(m ) ¥F (Z2) . so
>ty e(n)n= = G(s)Hr(s) where Gr(s) = 3 e e (n)n ™

He(s)= Y Me(mn—* =JJ(@ = Ae(p)p~ +p>) .
(n,q)=1 ptq

Same for 7(n) so Y2, 7(n)Ye(n)n~° = Gr¢(s)Hr¢(s),

Hee(s) = [J(1 = Ae(p)p~* + %) (1 — p~2°) = (g(25) T HE(s).
plq
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Relating L%(s) to L,¢(s)

If (n,q) =1 we have Ar(n)yhr(m) = 3_41(m ) ¥F (Z2) . so
>ty e(n)n= = G(s)Hr(s) where Gr(s) = 3 e e (n)n ™

= Y M =@ = rlp)p +p ).
(n,q)=1 ptq

Same for 7(n) so Y2, 7(n)Ye(n)n~° = Gr¢(s)Hr¢(s),

Hee(s) = [J(1 = Ae(p)p~* + %) (1 — p~2°) = (g(25) T HE(s).

plq
1
= G,?(S)Cq(Qs) Lrf(s) = ——=G2(s)H?(s) Gr¢(s)
¥r(1)
= ¥r(1)Grr(1)LF(s)
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Relating L%(s) to L,¢(s)

If (n,q) =1 we have Ar(n)yhr(m) = 3_41(m ) ¥F (Z2) . so
Doy Ye(mn™ = Ge(s)He(s) where Ge(s) = 3=, 400 Yr(n)n ™

= Y M =@ = rlp)p +p ).
(n,q)=1 ptq

Same for 7(n) so Y2, 7(n)Ye(n)n~° = Gr¢(s)Hr¢(s),
Hee(s) = [J(1 = Ae(p)p~* + %) (1 — p~2°) = (g(25) T HE(s).
plq

+ GH(E)Gq(25)Lrr(5) = g5 GRS HE(S)Gor(s)
= ¢7(1)Grr(1)LE(s)
f newform implies G2(s) = v¢(1)G,f(s) hence
LF(s) = Cq(25)Lre(s).

Moments and Amplification |l March 3rd 2021 20/23




Subconvexity

Estimate for truncated sums

Write 1 (1)L2(s) = >_°%, pr(n)n~s. Since L2(s) = (4(25)L.¢(s) if follows

pr(n)= Y T(m)ie(m).

d?m=n

(d,q)=1
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Subconvexity

Estimate for truncated sums

Write 1 (1)L2(s) = >_°%, pr(n)n~s. Since L2(s) = (4(25)L.¢(s) if follows

pr(n)= Y T(m)ie(m).

d?m=n

(d,q)=1

Hence by Corollary 4 if g is a smooth function supported on [X,2X] with
X < q'te satisfying gU) < X~/ then

S(g) = pe(n)n~2g(n) < q"**. (5)
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Subconvexity

Removing the restriction on X

By Mellin inversion, the functional equation (4) and shifting the contour

S(e) = 5= oot [ g(e)n~vas
n=1

e(s)=1
Ve(1) - / L2 <s+ 1) g(s)ds
2I7T Re(s):l f 2
1 1 42\ E 2k — )
= 1)— Lz(—s><> —2 " 5(s)ds
= 5(g")
r2(k—s) . .
where g°(¢) = h (15°t) and h(y) = fou(o)-o pa(i T £(5)y°ds has rapid

decay in the range y > X1 so (5) holds without the restriction on X.
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Conclusion of the proof

Partition L2(s) into sums of the type 1r(1)S(g). Estimate (5) gives
L2( )<<wf( ) 1 9+e

The bound wf(l) > q~ ¢ is known. Finally to prove the statement for the
derivatives L (s) replace g(n) with g(n)(log n)/.
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