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Reminders from last time

Set-up

F orthonormal basis of Sk(Γ0(q)),

∆(m, n) =
∑
f ∈F

ψf (m)ψf (n).

We want to estimate the sum

B(r , s) =
∑
m

∑
n

τ(m)τ(n)∆(rm, sn)F (m, n),

where ∆(m, n) =
∑

f ∈F ψf (m)ψf (n) and F smooth test function

supported in [M, 2M]× [N, 2N] with F (i ,j) � M−iN−j .

Theorem 2

Assume (q, rs) = 1 and M,N � q1+ε. Then

B(r , s)� qε[q(r , s)(rs)−
1
2 + q

11
12 (rs)

3
4 ](MN)

1
2
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Reminders from last time

Petersson formula

For now B(s)
.

= B(1, s). Using Petersson formula we got

B(s) = (k − 1)qT (0) + 2πik(k − 1)q
∑

c≡0 mod q

c−2T (c),

with

T (0) =
∑
n

τ(sn)τ(n)F (sn, n)�
(
MN

s

) 1
2

qε,

T (c) = c
∑
m

∑
n

τ(m)τ(n)S(m, sn; c)Jk−1

(
4π
√
smn

c

)
F (m, n).
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Reminders from last time

Transforming T (c) into Ramanujan sums

By Jutila Poisson summation T (c) = T ∗(c) + T−(c) + T+(c) where

T ∗(c) =
∑
n

τ(n)S(0, sn; c)G ∗(n)� (c , s)MNcε,

T±(c) =
∑
m

∑
n

τ(m)τ(n)S(0, sn ±m; c)G±(m, n)

where

G−(x , y) = −2π

∫
Y0

(
4π
√
xy

c

)
Jk−1

(
4π
√
sxy

c

)
F (x , y)

and G+ is similar with 4K0 replacing −2πY0.

Split

T±(c) =
∑
h

S(0, h, c)T±h (c)

where T±h (c) =
∑

sn±m=h τ(n)τ(m)G±(m, n).
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End of the proof of Theorem 2

A theorem from DFI: A quadratic divisor problem

Assume f is a smooth function on R+ × R+ satisfying

x iy j f (i ,j)(x , y)�
(

1 +
x

X

)−1 (
1 +

y

Y

)−1
P i+j . (1)

Define λaw = 2γ + log aw2

(a,w)2 , and

Λabh(x , y) =
1

ab

∞∑
w=1

(ab,w)

w2
S(h, 0;w)(log x − λaw )(log y − λbw ).

Theorem 1

Suppose h 6= 0, a, b ≥ 1 and (a, b) = 1. Then∑
am±bn=h

τ(m)τ(n)f (am, bn) =

∫ ∞
0

f (x ,±x ± h)Λabh(x ,±x ± h)dx

+ O(P
5
4 (X + Y )

1
4 (XY )

1
4

+ε).
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End of the proof of Theorem 2

Evaluation of T±h (c)

sn + m = 0 has no solution in positive integers so T+
0 (c) = 0.

For now
leave T−0 (c) as it is. For h 6= 0, use Theorem 1 with the test function
f ±(x , y) = G±

(
x , ys

)
satisfying (1) with Y = sN, P = 1 +

√
sMN/c ,

X = c2P2M−1 > Y .
Truncating the series defining Λh(x , y) to w < q, we get

T−h (c) =
∑

1≤w<q

(s,w)

w2
S(0, h;w)Y (h)

+ O((1 + |h|/X )−2P
1
4 (sN)

3
4Mcε)

where

Y (h) = −2π

∫ ∫
[log(h + sy)− λw ][log y − λsw ]

Y0

(
4π

c

√
(h + sy)x

)
Jk−1

(
4π

c

√
sxy

)
F (x , y)dxdy .

and similarly for T+
h with −2πY0 replaced with 4K0.
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End of the proof of Theorem 2

A Poisson-type lemma

Lemma 10.1

Let f be a C2 function on R such that (1 + x2)f (`)(x)� 1. Then∑
h

S(0, h; c)S(0, h;w)f (h) = ϕ((c ,w))
∑
u

′
f̂

(
u(c ,w)

cw

)
.

Here
∑ ′

means the summation is restricted to
(
u, cw

(c,w)2

)
= 1.

Idea: Split the summation in progressions h ≡ a mod [c ,w ] and apply
Poisson summation to get sums involving∑

a mod [c,w ]

S(0, a; c)S(0, a;w)e

(
− au

[c ,w ]

)
,

which counts the number of solutions to a certain congruence condition.
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End of the proof of Theorem 2

Evaluation of T±(c)

By the evaluation of T−h ,

T−(c) = ϕ(c)T−0 (c) +
∑

1≤w<q

∑
h 6=0

S(0, h;w)S(0, h; c)Y (h)

+ O
(
P

9
4 (sN)

3
4 c2+ε

)
.

Add and subtract the contribution from Y(0) then apply Lemma 10.1 for
Y (h) to get

T−(c) = ϕ(c)T−0 (c)− ϕ(c)
∑

1≤w<q

ϕ(w)
(s,w)

w2
Y (0)

+
∑

1≤w<q

ϕ((c ,w))
(s,w)

w2

∑
u

′
Ŷ

(
u(c ,w)

cw

)
(2)

+ O
(
P

9
4 (sN)

3
4 c2+ε

)
.

and similarly for T+
h without the term coming from h = 0.
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End of the proof of Theorem 2

Evaluation of B(s)

Putting everything together, B(s) splits as

• the contribution from T (0) (trivial bound),

• the contribution from T ∗(c) (trivial bound),

• the contribution from T−(c) + T+(c).

The contribution from T−(c) + T+(c) splits itself as

• the contribution T−0 (c) coming from h = 0,

• the contribution from Y (0) in T−(c)

• the “Fourier transform” contribution

• the error term coming from Theorem 1.
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End of the proof of Theorem 2

Dealing with the error term

Subtlety: the error term O
(
P

9
4 (sN)

3
4 c2+ε

)
in the evaluation of T±(c) is

too weak for large c (recall P = 1 +
√
sMN/c).

Use a result of Deshouiller-Iwaniec that implies the original sum∑
c≡0 mod q c

−2T±(c) can be truncated to c � C at a negligible cost for
suitable C . So only sum the error term for c � C .
Sum the main term in the expression (2) that we obtained for T−(c) (and
its analogue for T+(c)) for all c (not just c � C ), at the price of an
admissible error term.
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End of the proof of Theorem 2

A summation lemma

Lemma 11.1

Let f be a smooth function compactly supported on R+. Then∑
c≡0 mod q

ϕ(c)

c
f (c) =

1

ζ(2)ν(q)

∫
f (x)dx

+ O

(
ϕ(q)

q

∫
|f ′(x)| log

(
1 +

x

q

)
dx

)
where

ν(q) = q
∏
p|q

(
1 +

1

p

)
.

Idea:
∑

c≡0 mod q
ϕ(c)
c f (c) =

∑
d
µ(d)
d

∑
n f (n[d , q]) then apply

Euler-Maclaurin summation formula.
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End of the proof of Theorem 2

The contributions from T−0 (c) and Y (0)

The contribution fromT−0 (c) is bounded by q
∑

N<n<2N τ(sn)τ(n)|Q(n)|
where

Q(n) =
∑

c≡0 mod q

ϕ(c)

c2
G−(sn, n)

=

∫ ∞
0

Y0(4πt
√
sn)Jk−1(4π

√
sn)

∑
c≡0 mod q

ϕ(c)F (c2t2, n)tdt

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the
error term, handled by estimates for Bessel functions.
The contribution from Y (0) is dealt with similarly.

Félicien Comtat (Queen Mary University of London) Moments and Amplification II March 3rd 2021 12 / 23



12/23

End of the proof of Theorem 2

The contributions from T−0 (c) and Y (0)

The contribution fromT−0 (c) is bounded by q
∑

N<n<2N τ(sn)τ(n)|Q(n)|
where

Q(n) =
∑

c≡0 mod q

ϕ(c)

c2
G−(sn, n)

=

∫ ∞
0

Y0(4πt
√
sn)Jk−1(4π

√
sn)

∑
c≡0 mod q

ϕ(c)F (c2t2, n)tdt

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the
error term, handled by estimates for Bessel functions.

The contribution from Y (0) is dealt with similarly.
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End of the proof of Theorem 2

End of the Proof of Theorem 2

• The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of K0 and Y0, and is
evaluated explicitly, only leaving Jk−1.

The rest is similar: use
Euler-Maclaurin, then orthogonality of Bessel Jk−1 with cos to only
get the error term. The latter is an oscillatory integral that can be
dealt with.

• T (0), T−0 , Y (0) and the FT contribute �
(
MN
s

) 1
2 q1+ε. Summing

the error term from Theorem 1 gives � q
3
4

+εs
15
8 (MN)

1
2 . Adding all

up gives Theorem 2 in the case r = 1 when s is not too big. For
large s, directly use Corollary 1.

• To relax the condition r = 1, take F to be a Hecke eigenbase and
use the Hecke relations to turn τ(m)τ(n)ψf (rm)ψ(sn) into a sum
involving terms of the form τ(m′)τ(n′)ψf (m′)ψ(s ′n′) to finally get

B(r , s)� qε[q(r , s)(rs)−
1
2 + q

11
12 (rs)

3
4 ](MN)

1
2
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Félicien Comtat (Queen Mary University of London) Moments and Amplification II March 3rd 2021 13 / 23



13/23

End of the proof of Theorem 2

End of the Proof of Theorem 2

• The “Fourier transform” contribution is given by a triple integral.
The innermost involves a linear combination of K0 and Y0, and is
evaluated explicitly, only leaving Jk−1. The rest is similar: use
Euler-Maclaurin, then orthogonality of Bessel Jk−1 with cos to only
get the error term. The latter is an oscillatory integral that can be
dealt with.

• T (0), T−0 , Y (0) and the FT contribute �
(
MN
s

) 1
2 q1+ε. Summing

the error term from Theorem 1 gives � q
3
4

+εs
15
8 (MN)

1
2 . Adding all

up gives Theorem 2 in the case r = 1 when s is not too big. For
large s, directly use Corollary 1.

• To relax the condition r = 1, take F to be a Hecke eigenbase and
use the Hecke relations to turn τ(m)τ(n)ψf (rm)ψ(sn) into a sum
involving terms of the form τ(m′)τ(n′)ψf (m′)ψ(s ′n′) to finally get

B(r , s)� qε[q(r , s)(rs)−
1
2 + q

11
12 (rs)

3
4 ](MN)

1
2
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Amplification

First corolloary

From now on assume F is a Hecke eigenbase and denote by λf (`) the
eigenvalue of T` on the eigenfunction f .

Corollary 2

Let g be a smooth function supported on [M, 2M] with M � q1+ε such
that g (i) � M−i . Let ` coprime with q. Then

∑
f ∈F

λf (`)

∣∣∣∣∣∑
m

τ(m)ψf (m)g(m)

∣∣∣∣∣
2

� qε(q`−
1
2 + q

11
12 `

3
4 )M

Proof: Expand the square and use that

τ(n)λf (`)ψf (n) =
∑

a1a2n′=n
a0a1a2=`

µ(a1)τ(a2)τ(n′)ψf (a0a1n
′),

then use Theorem 2.
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Amplification

Mollification

Corollary 3

For any complex numbers c` with (`, q) = 1 we have

∑
f ∈F

|Λf (c)|2
∣∣∣∣∣∑

m

τ(m)ψf (m)g(m)

∣∣∣∣∣
2

� qε(q‖c‖2
2 + q

11
12L

3
2 ‖c‖2

1)M

where

Λf (c) =
∑
l≤L

∗
c`λf (`).

Proof: Expand |Λf (c)|2 and use

λf (m)λf (n) =
∑

d |(m,n)

λf

(mn

d2

)
then Corollary 2.
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Amplification

Amplification (1/2)

Corollary 4

Let f ∈ F . Then we have∑
m

τ(m)ψf (m)g(m)� M
1
2 qθ+ε

with θ = 47
96 , or θ = 29

60 if we assume

∑
l≤L

∗
λ2
f (`)� q−εL. (3)

Proof: Drop all but one term in Corollary 3 and make Λf (c) as large as

possible. If (3) holds, take c` = λf (`) and L = q
1

30
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Amplification

Amplification (2/2)

If we don’t want to assume (3), use the trick λf (p)2 − λf (p2) = 1 (for p

prime coprime to q) so take c` =


λf (`) if ` ≤ L

1
2 is prime,

−1 if ` ≤ L is square of a prime,

0 otherwise.

Then by the PNT Λf (c) ∼ 2L
1
2 (log L)−1.

By Deligne’s bound (Ramanujan Conjecture) |λf (p)| ≤ 2
‖c‖2

2 =
∑

p≤L(1 + λ2
f (p)) ≤ 5Λf (c) and

‖c‖1 =
∑

p≤L(1 + |λf (p)|) ≤ 3Λf (c) so taking L = q
1

24 gives the result.
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Subconvexity

Set-up

Let f be a newform for Sk(Γ0(q)) of weight k ≥ 2.

Lf (s) =
∞∑
n=1

λf (n)n−s ,

where λf (n) = ψf (n)/ψf (1).

It satisfies the functional equation

Ψf (s) = ikεf Ψf (1− s) (4)

where

Ψf (s) =

(√
q

2π

)s

Γ

(
s +

k − 1

2

)
Lf (s)

and εf = ±1 is the eigenvalue of the involution given by the action of[ −1
q

]
on f .

Convexity bound: Lf (s)� q
1
4 log2(q) for Re(s) = 1

2
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Subconvexity

Subconvexity

Theorem 3

On Re(s) = 1
2 ,

Lf (s)� q
1
2
θ+ε,

where θ is as in Corollary 4. All the derivatives L
(j)
f satisfy the same bound.

If we assume (3) then θ = 1
4 −

1
2 ×

1
60 .

Otherwise θ = 1
4 −

1
2 ×

1
96 .

Strategy of the proof: relate L2
f (s) to a Rankin-Selberg convolution Lτ f (s)

then use Corollary 4 and an approximation argument to get an upper
bound.
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Subconvexity

Relating L2
f (s) to Lτ f (s)

If (n, q) = 1 we have λf (n)ψf (m) =
∑

d |(m,n) ψf

(
mn
d2

)
, so∑∞

n=1 ψf (n)n−s = Gf (s)Hf (s) where Gf (s) =
∑

n|q∞ ψf (n)n−s

Hf (s) =
∑

(n,q)=1

λf (n)n−s =
∏
p-q

(1− λf (p)p−s + p−2s)−1.

Same for τ(n) so
∑∞

n=1 τ(n)ψf (n)n−s = Gτ f (s)Hτ f (s),

Hτ f (s) =
∏
p-q

(1− λf (p)p−s + p−2s)−2(1− p−2s) = ζq(2s)−1H2
f (s).

⇒ G 2
f (s)ζq(2s)Lτ f (s) =

1

ψf (1)
G 2
f (s)H2

f (s)Gτ f (s)

= ψf (1)Gτ f (1)L2
f (s)

f newform implies G 2
f (s) = ψf (1)Gτ f (s) hence

L2
f (s) = ζq(2s)Lτ f (s).
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Subconvexity

Estimate for truncated sums

Write ψf (1)L2
f (s) =

∑∞
n=1 ρf (n)n−s . Since L2

f (s) = ζq(2s)Lτ f (s) if follows

ρf (n) =
∑

d2m=n
(d ,q)=1

τ(m)ψf (m).

Hence by Corollary 4 if g is a smooth function supported on [X , 2X ] with
X � q1+ε satisfying g (j) � X−j then

S(g)
.

=
∞∑
n=1

ρf (n)n−
1
2 g(n)� qθ+ε. (5)
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Subconvexity

Removing the restriction on X

By Mellin inversion, the functional equation (4) and shifting the contour

S(g) =
1

2iπ

∞∑
n=1

ρf (n)n−
1
2

∫
Re(s)=1

ĝ(s)n−sds

= ψf (1)
1

2iπ

∫
Re(s)=1

L2
f

(
s +

1

2

)
ĝ(s)ds

= ψf (1)
1

2iπ

∫
Re(s)=1

L2
f

(
1

2
− s

)(
4π2

q

)2s Γ2(k2 − s)

Γ2(k2 + s)
ĝ(s)ds

= S(g∗),

where g∗(t) = h
(

16π4

q2 t
)

and h(y) =
∫
Re(s)=0

Γ2( k
2
−s)

Γ2( k
2

+s)
ĝ(s)y sds has rapid

decay in the range y � X−1 so (5) holds without the restriction on X .
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Subconvexity

Conclusion of the proof

Partition L2
f (s) into sums of the type ψf (1)S(g). Estimate (5) gives

L2
f (s)� ψf (1)−1qθ+ε.

The bound ψf (1)� q−ε is known. Finally to prove the statement for the

derivatives L
(j)
f (s), replace g(n) with g(n)(log n)j .
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