Moments and Amplification II

Félicien Comtat

Queen Mary University of London

March 3rd 2021

Set-up

\mathscr{F} orthonormal basis of $S_{k}\left(\Gamma_{0}(q)\right)$,

$$
\Delta(m, n)=\sum_{f \in \mathscr{F}} \psi_{f}(m) \overline{\psi_{f}}(n)
$$

We want to estimate the sum

$$
\mathscr{B}(r, s)=\sum_{m} \sum_{n} \tau(m) \tau(n) \Delta(r m, s n) F(m, n),
$$

where $\Delta(m, n)=\sum_{f \in \mathscr{F}} \psi_{f}(m) \overline{\psi_{f}}(n)$ and F smooth test function supported in $[M, 2 M] \times[N, 2 N]$ with $F^{(i, j)} \ll M^{-i} N^{-j}$.

Set-up

\mathscr{F} orthonormal basis of $S_{k}\left(\Gamma_{0}(q)\right)$,

$$
\Delta(m, n)=\sum_{f \in \mathscr{F}} \psi_{f}(m) \overline{\psi_{f}}(n)
$$

We want to estimate the sum

$$
\mathscr{B}(r, s)=\sum_{m} \sum_{n} \tau(m) \tau(n) \Delta(r m, s n) F(m, n),
$$

where $\Delta(m, n)=\sum_{f \in \mathscr{F}} \psi_{f}(m) \overline{\psi_{f}}(n)$ and F smooth test function supported in $[M, 2 M] \times[N, 2 N]$ with $F^{(i, j)} \ll M^{-i} N^{-j}$.

Theorem 2

Assume $(q, r s)=1$ and $M, N \ll q^{1+\epsilon}$. Then

$$
\mathscr{B}(r, s) \ll q^{\epsilon}\left[q(r, s)(r s)^{-\frac{1}{2}}+q^{\frac{11}{12}}(r s)^{\frac{3}{4}}\right](M N)^{\frac{1}{2}}
$$

Petersson formula

For now $\mathscr{B}(s) \doteq \mathscr{B}(1, s)$. Using Petersson formula we got

$$
\mathscr{B}(s)=(k-1) q T(0)+2 \pi i^{k}(k-1) q \sum_{c \equiv 0}^{\bmod q} c^{-2} T(c),
$$

with

$$
\begin{gathered}
T(0)=\sum_{n} \tau(s n) \tau(n) F(s n, n) \ll\left(\frac{M N}{s}\right)^{\frac{1}{2}} q^{\epsilon} \\
T(c)=c \sum_{m} \sum_{n} \tau(m) \tau(n) S(m, s n ; c) J_{k-1}\left(\frac{4 \pi \sqrt{s m n}}{c}\right) F(m, n) .
\end{gathered}
$$

Transforming $T(c)$ into Ramanujan sums

By Jutila Poisson summation $T(c)=T^{*}(c)+T^{-}(c)+T^{+}(c)$ where

$$
\begin{aligned}
T^{*}(c) & =\sum_{n} \tau(n) S(0, s n ; c) G^{*}(n) \ll(c, s) M N c^{\epsilon} \\
T^{ \pm}(c) & =\sum_{m} \sum_{n} \tau(m) \tau(n) S(0, s n \pm m ; c) G^{ \pm}(m, n)
\end{aligned}
$$

where

$$
G^{-}(x, y)=-2 \pi \int Y_{0}\left(\frac{4 \pi \sqrt{x y}}{c}\right) J_{k-1}\left(\frac{4 \pi \sqrt{s x y}}{c}\right) F(x, y)
$$

and G^{+}is similar with $4 K_{0}$ replacing $-2 \pi Y_{0}$.

Transforming $T(c)$ into Ramanujan sums

By Jutila Poisson summation $T(c)=T^{*}(c)+T^{-}(c)+T^{+}(c)$ where

$$
\begin{aligned}
T^{*}(c) & =\sum_{n} \tau(n) S(0, s n ; c) G^{*}(n) \ll(c, s) M N c^{\epsilon} \\
T^{ \pm}(c) & =\sum_{m} \sum_{n} \tau(m) \tau(n) S(0, s n \pm m ; c) G^{ \pm}(m, n)
\end{aligned}
$$

where

$$
G^{-}(x, y)=-2 \pi \int Y_{0}\left(\frac{4 \pi \sqrt{x y}}{c}\right) J_{k-1}\left(\frac{4 \pi \sqrt{s x y}}{c}\right) F(x, y)
$$

and G^{+}is similar with $4 K_{0}$ replacing $-2 \pi Y_{0}$.
Split

$$
T^{ \pm}(c)=\sum_{h} S(0, h, c) T_{h}^{ \pm}(c)
$$

where $T_{h}^{ \pm}(c)=\sum_{s n \pm m=h} \tau(n) \tau(m) G^{ \pm}(m, n)$.

A theorem from DFI: A quadratic divisor problem

Assume f is a smooth function on $\mathbb{R}^{+} \times \mathbb{R}^{+}$satisfying

$$
\begin{equation*}
x^{i} y^{j} f^{(i, j)}(x, y) \ll\left(1+\frac{x}{X}\right)^{-1}\left(1+\frac{y}{Y}\right)^{-1} P^{i+j} \tag{1}
\end{equation*}
$$

Define $\lambda_{a w}=2 \gamma+\log \frac{a w^{2}}{(a, w)^{2}}$, and

$$
\Lambda_{a b h}(x, y)=\frac{1}{a b} \sum_{w=1}^{\infty} \frac{(a b, w)}{w^{2}} S(h, 0 ; w)\left(\log x-\lambda_{a w}\right)\left(\log y-\lambda_{b w}\right)
$$

Theorem 1

Suppose $h \neq 0, a, b \geq 1$ and $(a, b)=1$. Then

$$
\begin{aligned}
\sum_{a m \pm b n=h} \tau(m) \tau(n) f(a m, b n) & =\int_{0}^{\infty} f(x, \pm x \pm h) \wedge_{a b h}(x, \pm x \pm h) d x \\
& +O\left(P^{\frac{5}{4}}(X+Y)^{\frac{1}{4}}(X Y)^{\frac{1}{4}+\epsilon}\right) .
\end{aligned}
$$

Evaluation of $T_{h}^{ \pm}(c)$

$s n+m=0$ has no solution in positive integers so $T_{0}^{+}(c)=0$.

Evaluation of $T_{h}^{ \pm}(c)$

$s n+m=0$ has no solution in positive integers so $T_{0}^{+}(c)=0$. For now leave $T_{0}^{-}(c)$ as it is.

Evaluation of $T_{h}^{ \pm}(c)$

$s n+m=0$ has no solution in positive integers so $T_{0}^{+}(c)=0$. For now leave $T_{0}^{-}(c)$ as it is. For $h \neq 0$, use Theorem 1 with the test function $f^{ \pm}(x, y)=G^{ \pm}\left(x, \frac{y}{s}\right)$ satisfying (1) with $Y=s N, P=1+\sqrt{s M N} / c$, $X=c^{2} P^{2} M^{-1}>Y$.

Evaluation of $T_{h}^{ \pm}(c)$

$s n+m=0$ has no solution in positive integers so $T_{0}^{+}(c)=0$. For now leave $T_{0}^{-}(c)$ as it is. For $h \neq 0$, use Theorem 1 with the test function $f^{ \pm}(x, y)=G^{ \pm}\left(x, \frac{y}{s}\right)$ satisfying (1) with $Y=s N, P=1+\sqrt{s M N} / c$, $X=c^{2} P^{2} M^{-1}>Y$.
Truncating the series defining $\Lambda_{h}(x, y)$ to $w<q$, we get

$$
\begin{aligned}
T_{h}^{-}(c) & =\sum_{1 \leq w<q} \frac{(s, w)}{w^{2}} S(0, h ; w) Y(h) \\
& +O\left((1+|h| / X)^{-2} P^{\frac{1}{4}}(s N)^{\frac{3}{4}} M c^{\epsilon}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& Y(h)=-2 \pi \iint\left[\log (h+s y)-\lambda_{w}\right]\left[\log y-\lambda_{s w}\right] \\
& Y_{0}\left(\frac{4 \pi}{c} \sqrt{(h+s y) x}\right) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{s x y}\right) F(x, y) d x d y .
\end{aligned}
$$

and similarly for T_{h}^{+}with $-2 \pi Y_{0}$ replaced with $4 K_{0}$.

A Poisson-type lemma

Lemma 10.1

Let f be a \mathcal{C}^{2} function on \mathbb{R} such that $\left(1+x^{2}\right) f^{(\ell)}(x) \ll 1$. Then

$$
\sum_{h} S(0, h ; c) S(0, h ; w) f(h)=\varphi((c, w)) \sum_{u}{ }^{\prime} \hat{f}\left(\frac{u(c, w)}{c w}\right)
$$

Here \sum^{\prime} means the summation is restricted to $\left(u, \frac{c w}{(c, w)^{2}}\right)=1$.
Idea: Split the summation in progressions $h \equiv a \bmod [c, w]$ and apply Poisson summation to get sums involving

$$
\sum_{a}^{\bmod [c, w]} S(0, a ; c) S(0, a ; w) e\left(-\frac{a u}{[c, w]}\right),
$$

which counts the number of solutions to a certain congruence condition.

Evaluation of $T^{ \pm}(c)$

By the evaluation of T_{h}^{-},

$$
\begin{aligned}
T^{-}(c) & =\varphi(c) T_{0}^{-}(c)+\sum_{1 \leq w<q} \sum_{h \neq 0} S(0, h ; w) S(0, h ; c) Y(h) \\
& +O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right) .
\end{aligned}
$$

Evaluation of $T^{ \pm}(c)$

By the evaluation of T_{h}^{-},

$$
\begin{aligned}
T^{-}(c) & =\varphi(c) T_{0}^{-}(c)+\sum_{1 \leq w<q} \sum_{h \neq 0} S(0, h ; w) S(0, h ; c) Y(h) \\
& +O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right) .
\end{aligned}
$$

Add and subtract the contribution from $\mathrm{Y}(0)$ then apply Lemma 10.1 for $Y(h)$ to get

$$
\begin{align*}
T^{-}(c) & =\varphi(c) T_{0}^{-}(c)-\varphi(c) \sum_{1 \leq w<q} \varphi(w) \frac{(s, w)}{w^{2}} Y(0) \\
& +\sum_{1 \leq w<q} \varphi((c, w)) \frac{(s, w)}{w^{2}} \sum_{u}^{\prime} \hat{Y}\left(\frac{u(c, w)}{c w}\right) \tag{2}\\
& +O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right) .
\end{align*}
$$

Evaluation of $T^{ \pm}(c)$

By the evaluation of T_{h}^{-},

$$
\begin{aligned}
T^{-}(c) & =\varphi(c) T_{0}^{-}(c)+\sum_{1 \leq w<q} \sum_{h \neq 0} S(0, h ; w) S(0, h ; c) Y(h) \\
& +O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right) .
\end{aligned}
$$

Add and subtract the contribution from $\mathrm{Y}(0)$ then apply Lemma 10.1 for $Y(h)$ to get

$$
\begin{align*}
T^{-}(c) & =\varphi(c) T_{0}^{-}(c)-\varphi(c) \sum_{1 \leq w<q} \varphi(w) \frac{(s, w)}{w^{2}} Y(0) \\
& +\sum_{1 \leq w<q} \varphi((c, w)) \frac{(s, w)}{w^{2}} \sum_{u}^{\prime} \hat{Y}\left(\frac{u(c, w)}{c w}\right) \tag{2}\\
& +O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right) .
\end{align*}
$$

and similarly for T_{h}^{+}without the term coming from $h=0$.

Evaluation of $\mathscr{B}(s)$

Putting everything together, $\mathscr{B}(s)$ splits as

- the contribution from $T(0)$ (trivial bound),
- the contribution from $T^{*}(c)$ (trivial bound),
- the contribution from $T^{-}(c)+T^{+}(c)$.

Evaluation of $\mathscr{B}(s)$

Putting everything together, $\mathscr{B}(s)$ splits as

- the contribution from $T(0)$ (trivial bound),
- the contribution from $T^{*}(c)$ (trivial bound),
- the contribution from $T^{-}(c)+T^{+}(c)$.

The contribution from $T^{-}(c)+T^{+}(c)$ splits itself as

- the contribution $T_{0}^{-}(c)$ coming from $h=0$,
- the contribution from $Y(0)$ in $T^{-}(c)$
- the "Fourier transform" contribution
- the error term coming from Theorem 1.

Dealing with the error term

Subtlety: the error term $O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right)$ in the evaluation of $T^{ \pm}(c)$ is too weak for large c (recall $P=1+\sqrt{s M N} / c$).

Dealing with the error term

Subtlety: the error term $O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right)$ in the evaluation of $T^{ \pm}(c)$ is too weak for large c (recall $P=1+\sqrt{s M N} / c$).
Use a result of Deshouiller-Iwaniec that implies the original sum $\sum_{c \equiv 0 \bmod q} c^{-2} T^{ \pm}(c)$ can be truncated to $c \ll C$ at a negligible cost for suitable C. So only sum the error term for $c \ll C$.

Dealing with the error term

Subtlety: the error term $O\left(P^{\frac{9}{4}}(s N)^{\frac{3}{4}} c^{2+\epsilon}\right)$ in the evaluation of $T^{ \pm}(c)$ is too weak for large c (recall $P=1+\sqrt{s M N} / c$).
Use a result of Deshouiller-Iwaniec that implies the original sum $\sum_{c \equiv 0 \bmod q} c^{-2} T^{ \pm}(c)$ can be truncated to $c \ll C$ at a negligible cost for suitable C. So only sum the error term for $c \ll C$.
Sum the main term in the expression (2) that we obtained for T^{-}(c) (and its analogue for $T^{+}(c)$) for all c (not just $c \ll C$), at the price of an admissible error term.

A summation lemma

Lemma 11.1

Let f be a smooth function compactly supported on \mathbb{R}^{+}. Then

$$
\begin{aligned}
\sum_{c \equiv 0} \frac{\varphi(c)}{c} f(c) & =\frac{1}{\zeta(2) \nu(q)} \int f(x) d x \\
& +O\left(\frac{\varphi(q)}{q} \int\left|f^{\prime}(x)\right| \log \left(1+\frac{x}{q}\right) d x\right)
\end{aligned}
$$

where

$$
\nu(q)=q \prod_{p \mid q}\left(1+\frac{1}{p}\right)
$$

Idea: $\sum_{c \equiv 0} \bmod q \frac{\varphi(c)}{c} f(c)=\sum_{d} \frac{\mu(d)}{d} \sum_{n} f(n[d, q])$ then apply Euler-Maclaurin summation formula.

The contributions from $T_{0}^{-}(c)$ and $Y(0)$

The contribution from $T_{0}^{-}(c)$ is bounded by $q \sum_{N<n<2 N} \tau(s n) \tau(n)|Q(n)|$ where

$$
\begin{aligned}
& Q(n)=\sum_{c \equiv 0 \bmod q} \frac{\varphi(c)}{c^{2}} G^{-}(s n, n) \\
& =\int_{0}^{\infty} Y_{0}(4 \pi t \sqrt{s n}) J_{k-1}(4 \pi \sqrt{s n}) \sum_{c \equiv 0}^{\bmod q} \varphi(c) F\left(c^{2} t^{2}, n\right) t d t
\end{aligned}
$$

The contributions from $T_{0}^{-}(c)$ and $Y(0)$

The contribution from $T_{0}^{-}(c)$ is bounded by $q \sum_{N<n<2 N} \tau(s n) \tau(n)|Q(n)|$ where

$$
\begin{aligned}
& Q(n)=\sum_{c \equiv 0} \frac{\varphi(c)}{c^{2}} G^{-}(s n, n) \\
& =\int_{0}^{\infty} Y_{0}(4 \pi t \sqrt{s n}) J_{k-1}(4 \pi \sqrt{s n}) \sum_{c \equiv 0}^{\bmod q} \varphi(c) F\left(c^{2} t^{2}, n\right) t d t
\end{aligned}
$$

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the error term, handled by estimates for Bessel functions.

The contributions from $T_{0}^{-}(c)$ and $Y(0)$

The contribution from $T_{0}^{-}(c)$ is bounded by $q \sum_{N<n<2 N} \tau(s n) \tau(n)|Q(n)|$ where

$$
\begin{aligned}
& Q(n)=\sum_{c \equiv 0 \bmod q} \frac{\varphi(c)}{c^{2}} G^{-}(s n, n) \\
& =\int_{0}^{\infty} Y_{0}(4 \pi t \sqrt{s n}) J_{k-1}(4 \pi \sqrt{s n}) \sum_{c \equiv 0}^{\bmod q} \varphi(c) F\left(c^{2} t^{2}, n\right) t d t
\end{aligned}
$$

Apply Lemma 11.1. By orthogonality of Bessel functions, get only the error term, handled by estimates for Bessel functions.
The contribution from $Y(0)$ is dealt with similarly.

End of the Proof of Theorem 2

- The "Fourier transform" contribution is given by a triple integral. The innermost involves a linear combination of K_{0} and Y_{0}, and is evaluated explicitly, only leaving J_{k-1}.

End of the Proof of Theorem 2

- The "Fourier transform" contribution is given by a triple integral. The innermost involves a linear combination of K_{0} and Y_{0}, and is evaluated explicitly, only leaving J_{k-1}. The rest is similar: use Euler-Maclaurin, then orthogonality of Bessel J_{k-1} with cos to only get the error term. The latter is an oscillatory integral that can be dealt with.

End of the Proof of Theorem 2

- The "Fourier transform" contribution is given by a triple integral. The innermost involves a linear combination of K_{0} and Y_{0}, and is evaluated explicitly, only leaving J_{k-1}. The rest is similar: use Euler-Maclaurin, then orthogonality of Bessel J_{k-1} with cos to only get the error term. The latter is an oscillatory integral that can be dealt with.
- $T(0), T_{0}^{-}, Y(0)$ and the FT contribute $\ll\left(\frac{M N}{s}\right)^{\frac{1}{2}} q^{1+\epsilon}$. Summing the error term from Theorem 1 gives $\ll q^{\frac{3}{4}+\epsilon} S^{\frac{15}{8}}(M N)^{\frac{1}{2}}$. Adding all up gives Theorem 2 in the case $r=1$ when s is not too big. For large s, directly use Corollary 1.

End of the Proof of Theorem 2

- The "Fourier transform" contribution is given by a triple integral. The innermost involves a linear combination of K_{0} and Y_{0}, and is evaluated explicitly, only leaving J_{k-1}. The rest is similar: use Euler-Maclaurin, then orthogonality of Bessel J_{k-1} with cos to only get the error term. The latter is an oscillatory integral that can be dealt with.
- $T(0), T_{0}^{-}, Y(0)$ and the FT contribute $\ll\left(\frac{M N}{s}\right)^{\frac{1}{2}} q^{1+\epsilon}$. Summing the error term from Theorem 1 gives $\ll q^{\frac{3}{4}+\epsilon} S^{\frac{15}{8}}(M N)^{\frac{1}{2}}$. Adding all up gives Theorem 2 in the case $r=1$ when s is not too big. For large s, directly use Corollary 1.
- To relax the condition $r=1$, take \mathscr{F} to be a Hecke eigenbase and use the Hecke relations to turn $\tau(m) \tau(n) \psi_{f}(r m) \psi(s n)$ into a sum involving terms of the form $\tau\left(m^{\prime}\right) \tau\left(n^{\prime}\right) \psi_{f}\left(m^{\prime}\right) \psi\left(s^{\prime} n^{\prime}\right)$ to finally get

$$
\mathscr{B}(r, s) \ll q^{\epsilon}\left[q(r, s)(r s)^{-\frac{1}{2}}+q^{\frac{11}{12}}(r s)^{\frac{3}{4}}\right](M N)^{\frac{1}{2}}
$$

First corolloary

From now on assume \mathscr{F} is a Hecke eigenbase and denote by $\lambda_{f}(\ell)$ the eigenvalue of T_{ℓ} on the eigenfunction f.

Corollary 2

Let g be a smooth function supported on $[M, 2 M]$ with $M \ll q^{1+\epsilon}$ such that $g^{(i)} \ll M^{-i}$. Let ℓ coprime with q. Then

$$
\sum_{f \in \mathscr{F}} \lambda_{f}(\ell)\left|\sum_{m} \tau(m) \psi_{f}(m) g(m)\right|^{2} \ll q^{\epsilon}\left(q \ell^{-\frac{1}{2}}+q^{\frac{11}{12}} \ell^{\frac{3}{4}}\right) M
$$

First corolloary

From now on assume \mathscr{F} is a Hecke eigenbase and denote by $\lambda_{f}(\ell)$ the eigenvalue of T_{ℓ} on the eigenfunction f.

Corollary 2

Let g be a smooth function supported on $[M, 2 M]$ with $M \ll q^{1+\epsilon}$ such that $g^{(i)} \ll M^{-i}$. Let ℓ coprime with q. Then

$$
\sum_{f \in \mathscr{F}} \lambda_{f}(\ell)\left|\sum_{m} \tau(m) \psi_{f}(m) g(m)\right|^{2} \ll q^{\epsilon}\left(q \ell^{-\frac{1}{2}}+q^{\frac{11}{12}} \ell^{\frac{3}{4}}\right) M
$$

Proof: Expand the square and use that

$$
\tau(n) \lambda_{f}(\ell) \psi_{f}(n)=\sum_{\substack{a_{1} a_{2} n^{\prime}=n \\ a_{0} a_{1} a_{2}=\ell}} \mu\left(a_{1}\right) \tau\left(a_{2}\right) \tau\left(n^{\prime}\right) \psi_{f}\left(a_{0} a_{1} n^{\prime}\right)
$$

then use Theorem 2.

Mollification

Corollary 3

For any complex numbers c_{ℓ} with $(\ell, q)=1$ we have

$$
\sum_{f \in \mathscr{F}}\left|\Lambda_{f}(c)\right|^{2}\left|\sum_{m} \tau(m) \psi_{f}(m) g(m)\right|^{2} \ll q^{\epsilon}\left(q\|c\|_{2}^{2}+q^{\frac{11}{12}} L^{\frac{3}{2}}\|c\|_{1}^{2}\right) M
$$

where

$$
\Lambda_{f}(c)=\sum_{I \leq L}^{*} c_{\ell} \lambda_{f}(\ell)
$$

Mollification

Corollary 3

For any complex numbers c_{ℓ} with $(\ell, q)=1$ we have

$$
\sum_{f \in \mathscr{F}}\left|\Lambda_{f}(c)\right|^{2}\left|\sum_{m} \tau(m) \psi_{f}(m) g(m)\right|^{2} \ll q^{\epsilon}\left(q\|c\|_{2}^{2}+q^{\frac{11}{12}} L^{\frac{3}{2}}\|c\|_{1}^{2}\right) M
$$

where

$$
\Lambda_{f}(c)=\sum_{I \leq L}^{*} c_{\ell} \lambda_{f}(\ell)
$$

Proof: Expand $\left|\Lambda_{f}(c)\right|^{2}$ and use

$$
\lambda_{f}(m) \lambda_{f}(n)=\sum_{d \mid(m, n)} \lambda_{f}\left(\frac{m n}{d^{2}}\right)
$$

then Corollary 2.

Amplification (1/2)

Corollary 4

Let $f \in \mathscr{F}$. Then we have

$$
\sum_{m} \tau(m) \psi_{f}(m) g(m) \ll M^{\frac{1}{2}} q^{\theta+\epsilon}
$$

with $\theta=\frac{47}{96}$, or $\theta=\frac{29}{60}$ if we assume

$$
\begin{equation*}
\sum_{I \leq L}^{*} \lambda_{f}^{2}(\ell) \gg q^{-\epsilon} L \tag{3}
\end{equation*}
$$

Amplification (1/2)

Corollary 4

Let $f \in \mathscr{F}$. Then we have

$$
\sum_{m} \tau(m) \psi_{f}(m) g(m) \ll M^{\frac{1}{2}} q^{\theta+\epsilon}
$$

with $\theta=\frac{47}{96}$, or $\theta=\frac{29}{60}$ if we assume

$$
\begin{equation*}
\sum_{I \leq L}^{*} \lambda_{f}^{2}(\ell) \gg q^{-\epsilon} L \tag{3}
\end{equation*}
$$

Proof: Drop all but one term in Corollary 3 and make $\Lambda_{f}(c)$ as large as possible. If (3) holds, take $c_{\ell}=\lambda_{f}(\ell)$ and $L=q^{\frac{1}{30}}$

Amplification (2/2)

If we don't want to assume (3), use the trick $\lambda_{f}(p)^{2}-\lambda_{f}\left(p^{2}\right)=1$ (for p prime coprime to q) so take $c_{\ell}=\left\{\begin{array}{l}\lambda_{f}(\ell) \text { if } \ell \leq L^{\frac{1}{2}} \text { is prime, } \\ -1 \text { if } \ell \leq L \text { is square of a prime, } \\ 0 \text { otherwise. }\end{array}\right.$ Then by the PNT $\Lambda_{f}(c) \sim 2 L^{\frac{1}{2}}(\log L)^{-1}$.

Amplification (2/2)

If we don't want to assume (3), use the trick $\lambda_{f}(p)^{2}-\lambda_{f}\left(p^{2}\right)=1$ (for p prime coprime to q) so take $c_{\ell}=\left\{\begin{array}{l}\lambda_{f}(\ell) \text { if } \ell \leq L^{\frac{1}{2}} \text { is prime, } \\ -1 \text { if } \ell \leq L \text { is square of a prime, } \\ 0 \text { otherwise. }\end{array}\right.$
Then by the PNT $\Lambda_{f}(c) \sim 2 L^{\frac{1}{2}}(\log L)^{-1}$.
By Deligne's bound (Ramanujan Conjecture) $\left|\lambda_{f}(p)\right| \leq 2$
$\|c\|_{2}^{2}=\sum_{p \leq L}\left(1+\lambda_{f}^{2}(p)\right) \leq 5 \Lambda_{f}(c)$ and
$\|c\|_{1}=\sum_{p \leq L}\left(1+\left|\lambda_{f}(p)\right|\right) \leq 3 \Lambda_{f}(c)$ so taking $L=q^{\frac{1}{24}}$ gives the result.

Set-up

Let f be a newform for $S_{k}\left(\Gamma_{0}(q)\right)$ of weight $k \geq 2$.

$$
L_{f}(s)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{-s}
$$

where $\lambda_{f}(n)=\psi_{f}(n) / \psi_{f}(1)$.

Set-up

Let f be a newform for $S_{k}\left(\Gamma_{0}(q)\right)$ of weight $k \geq 2$.

$$
L_{f}(s)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{-s}
$$

where $\lambda_{f}(n)=\psi_{f}(n) / \psi_{f}(1)$.
It satisfies the functional equation

$$
\begin{equation*}
\Psi_{f}(s)=i^{k} \epsilon_{f} \Psi_{f}(1-s) \tag{4}
\end{equation*}
$$

where

$$
\Psi_{f}(s)=\left(\frac{\sqrt{q}}{2 \pi}\right)^{s} \Gamma\left(s+\frac{k-1}{2}\right) L_{f}(s)
$$

and $\epsilon_{f}= \pm 1$ is the eigenvalue of the involution given by the action of $\left[q^{-1}\right]$ on f.

Set-up

Let f be a newform for $S_{k}\left(\Gamma_{0}(q)\right)$ of weight $k \geq 2$.

$$
L_{f}(s)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{-s}
$$

where $\lambda_{f}(n)=\psi_{f}(n) / \psi_{f}(1)$.
It satisfies the functional equation

$$
\begin{equation*}
\Psi_{f}(s)=i^{k} \epsilon_{f} \Psi_{f}(1-s) \tag{4}
\end{equation*}
$$

where

$$
\Psi_{f}(s)=\left(\frac{\sqrt{q}}{2 \pi}\right)^{s} \Gamma\left(s+\frac{k-1}{2}\right) L_{f}(s)
$$

and $\epsilon_{f}= \pm 1$ is the eigenvalue of the involution given by the action of $\left[q^{-1}\right]$ on f.
Convexity bound: $L_{f}(s) \ll q^{\frac{1}{4}} \log ^{2}(q)$ for $\operatorname{Re}(s)=\frac{1}{2}$

Subconvexity

Theorem 3

On $\operatorname{Re}(s)=\frac{1}{2}$,

$$
L_{f}(s) \ll q^{\frac{1}{2} \theta+\epsilon},
$$

where θ is as in Corollary 4. All the derivatives $L_{f}^{(j)}$ satisfy the same bound.

Subconvexity

Theorem 3

On $\operatorname{Re}(s)=\frac{1}{2}$,

$$
L_{f}(s) \ll q^{\frac{1}{2} \theta+\epsilon}
$$

where θ is as in Corollary 4. All the derivatives $L_{f}^{(j)}$ satisfy the same bound.
If we assume (3) then $\theta=\frac{1}{4}-\frac{1}{2} \times \frac{1}{60}$.
Otherwise $\theta=\frac{1}{4}-\frac{1}{2} \times \frac{1}{96}$.

Subconvexity

Theorem 3

On $\operatorname{Re}(s)=\frac{1}{2}$,

$$
L_{f}(s) \ll q^{\frac{1}{2} \theta+\epsilon}
$$

where θ is as in Corollary 4. All the derivatives $L_{f}^{(j)}$ satisfy the same bound.
If we assume (3) then $\theta=\frac{1}{4}-\frac{1}{2} \times \frac{1}{60}$.
Otherwise $\theta=\frac{1}{4}-\frac{1}{2} \times \frac{1}{96}$.
Strategy of the proof: relate $L_{f}^{2}(s)$ to a Rankin-Selberg convolution $L_{\tau f}(s)$ then use Corollary 4 and an approximation argument to get an upper bound.

Relating $L_{f}^{2}(s)$ to $L_{\tau f}(s)$
If $(n, q)=1$ we have $\lambda_{f}(n) \psi_{f}(m)=\sum_{d \mid(m, n)} \psi_{f}\left(\frac{m n}{d^{2}}\right)$, so $\sum_{n=1}^{\infty} \psi_{f}(n) n^{-s}=G_{f}(s) H_{f}(s)$ where $G_{f}(s)=\sum_{n \mid q^{\infty}} \psi_{f}(n) n^{-s}$

$$
H_{f}(s)=\sum_{(n, q)=1} \lambda_{f}(n) n^{-s}=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-1}
$$

Relating $L_{f}^{2}(s)$ to $L_{\tau f}(s)$
If $(n, q)=1$ we have $\lambda_{f}(n) \psi_{f}(m)=\sum_{d \mid(m, n)} \psi_{f}\left(\frac{m n}{d^{2}}\right)$, so $\sum_{n=1}^{\infty} \psi_{f}(n) n^{-s}=G_{f}(s) H_{f}(s)$ where $G_{f}(s)=\sum_{n \mid q^{\infty}} \psi_{f}(n) n^{-s}$

$$
H_{f}(s)=\sum_{(n, q)=1} \lambda_{f}(n) n^{-s}=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-1} .
$$

Same for $\tau(n)$ so $\sum_{n=1}^{\infty} \tau(n) \psi_{f}(n) n^{-s}=G_{\tau f}(s) H_{\tau f}(s)$,

$$
H_{\tau f}(s)=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-2}\left(1-p^{-2 s}\right)=\zeta_{q}(2 s)^{-1} H_{f}^{2}(s) .
$$

Relating $L_{f}^{2}(s)$ to $L_{\tau f}(s)$
If $(n, q)=1$ we have $\lambda_{f}(n) \psi_{f}(m)=\sum_{d \mid(m, n)} \psi_{f}\left(\frac{m n}{d^{2}}\right)$, so $\sum_{n=1}^{\infty} \psi_{f}(n) n^{-s}=G_{f}(s) H_{f}(s)$ where $G_{f}(s)=\sum_{n \mid q^{\infty}} \psi_{f}(n) n^{-s}$

$$
H_{f}(s)=\sum_{(n, q)=1} \lambda_{f}(n) n^{-s}=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-1} .
$$

Same for $\tau(n)$ so $\sum_{n=1}^{\infty} \tau(n) \psi_{f}(n) n^{-s}=G_{\tau f}(s) H_{\tau f}(s)$,

$$
\begin{aligned}
& H_{\tau f}(s)=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-2}\left(1-p^{-2 s}\right)=\zeta_{q}(2 s)^{-1} H_{f}^{2}(s) \\
& \Rightarrow G_{f}^{2}(s) \zeta_{q}(2 s) L_{\tau f}(s)=\frac{1}{\psi_{f}(1)} G_{f}^{2}(s) H_{f}^{2}(s) G_{\tau f}(s) \\
& \\
& =\psi_{f}(1) G_{\tau f}(1) L_{f}^{2}(s)
\end{aligned}
$$

Relating $L_{f}^{2}(s)$ to $L_{\tau f}(s)$
If $(n, q)=1$ we have $\lambda_{f}(n) \psi_{f}(m)=\sum_{d \mid(m, n)} \psi_{f}\left(\frac{m n}{d^{2}}\right)$, so $\sum_{n=1}^{\infty} \psi_{f}(n) n^{-s}=G_{f}(s) H_{f}(s)$ where $G_{f}(s)=\sum_{n \mid q^{\infty}} \psi_{f}(n) n^{-s}$

$$
H_{f}(s)=\sum_{(n, q)=1} \lambda_{f}(n) n^{-s}=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-1} .
$$

Same for $\tau(n)$ so $\sum_{n=1}^{\infty} \tau(n) \psi_{f}(n) n^{-s}=G_{\tau f}(s) H_{\tau f}(s)$,

$$
\begin{aligned}
& H_{\tau f}(s)=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-2}\left(1-p^{-2 s}\right)=\zeta_{q}(2 s)^{-1} H_{f}^{2}(s) \\
& \Rightarrow G_{f}^{2}(s) \zeta_{q}(2 s) L_{\tau f}(s)=\frac{1}{\psi_{f}(1)} G_{f}^{2}(s) H_{f}^{2}(s) G_{\tau f}(s) \\
& \\
& =\psi_{f}(1) G_{\tau f}(1) L_{f}^{2}(s)
\end{aligned}
$$

f newform implies $G_{f}^{2}(s)=\psi_{f}(1) G_{\tau f}(s)$ hence

$$
L_{f}^{2}(s)=\zeta_{q}(2 s) L_{\tau f}(s)
$$

Estimate for truncated sums

Write $\psi_{f}(1) L_{f}^{2}(s)=\sum_{n=1}^{\infty} \rho_{f}(n) n^{-s}$. Since $L_{f}^{2}(s)=\zeta_{q}(2 s) L_{\tau f}(s)$ if follows

$$
\rho_{f}(n)=\sum_{\substack{d^{2} m=n \\(d, q)=1}} \tau(m) \psi_{f}(m) .
$$

Estimate for truncated sums

Write $\psi_{f}(1) L_{f}^{2}(s)=\sum_{n=1}^{\infty} \rho_{f}(n) n^{-s}$. Since $L_{f}^{2}(s)=\zeta_{q}(2 s) L_{\tau f}(s)$ if follows

$$
\rho_{f}(n)=\sum_{\substack{d^{2} m=n \\(d, q)=1}} \tau(m) \psi_{f}(m) .
$$

Hence by Corollary 4 if g is a smooth function supported on $[X, 2 X]$ with $X \ll q^{1+\epsilon}$ satisfying $g^{(j)} \ll X^{-j}$ then

$$
\begin{equation*}
S(g) \doteq \sum_{n=1}^{\infty} \rho_{f}(n) n^{-\frac{1}{2}} g(n) \ll q^{\theta+\epsilon} \tag{5}
\end{equation*}
$$

Removing the restriction on X

By Mellin inversion, the functional equation (4) and shifting the contour

$$
\begin{aligned}
S(g) & =\frac{1}{2 i \pi} \sum_{n=1}^{\infty} \rho_{f}(n) n^{-\frac{1}{2}} \int_{\operatorname{Re}(s)=1} \hat{g}(s) n^{-s} d s \\
& =\psi_{f}(1) \frac{1}{2 i \pi} \int_{\operatorname{Re}(s)=1} L_{f}^{2}\left(s+\frac{1}{2}\right) \hat{g}(s) d s \\
& =\psi_{f}(1) \frac{1}{2 i \pi} \int_{\operatorname{Re}(s)=1} L_{f}^{2}\left(\frac{1}{2}-s\right)\left(\frac{4 \pi^{2}}{q}\right)^{2 s} \frac{\Gamma^{2}\left(\frac{k}{2}-s\right)}{\Gamma^{2}\left(\frac{k}{2}+s\right)} \hat{g}(s) d s \\
& =S\left(g^{*}\right)
\end{aligned}
$$

where $g^{*}(t)=h\left(\frac{16 \pi^{4}}{q^{2}} t\right)$ and $h(y)=\int_{\operatorname{Re}(s)=0} \frac{\Gamma^{2}\left(\frac{k}{2}-s\right)}{\Gamma^{2}\left(\frac{k}{2}+s\right)} \hat{g}(s) y^{s} d s$ has rapid decay in the range $y \gg X^{-1}$ so (5) holds without the restriction on X.

Conclusion of the proof

Partition $L_{f}^{2}(s)$ into sums of the type $\psi_{f}(1) S(g)$. Estimate (5) gives

$$
L_{f}^{2}(s) \ll \psi_{f}(1)^{-1} q^{\theta+\epsilon}
$$

The bound $\psi_{f}(1) \gg q^{-\epsilon}$ is known. Finally to prove the statement for the derivatives $L_{f}^{(j)}(s)$, replace $g(n)$ with $g(n)(\log n)^{j}$.

