GL(3) subconvexity in the twist aspect

Yongxiao Lin
EPF Lausanne

London learning seminar on analytic number theory March 24, 2021

Content

- Character twists of GL_{3}
- Selfdual case.
- Munshi's result.
- Holowinsky-Nelson's simplification.
- Sketch of Munshi and H-N's proof
- Some comparisons for twists of GL_{d}
- The GL_{1} case
- The GL_{2} case
- The $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$ case
- Remained questions and new challenge.

Self-dual case: a result of Blomer

Let $\chi \bmod q$ be a primitive Dirichlet character. Let $\varphi \in \mathrm{GL}_{3}(\mathbb{Z})$ be a fixed Hecke-Maass cusp form.
Using a first moment method (à la Xiaoqing Li)

$$
\begin{aligned}
& \frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q)}\left(1+\left|t_{j}\right|\right)^{-B} L\left(1 / 2, \varphi \times f_{j} \cdot \chi\right) \\
& \quad+\frac{1}{q} \int_{-\infty}^{\infty} \frac{|t|^{2}}{(1+|t|)^{B}}|L(1 / 2+i t, \varphi \cdot \chi)|^{2} \mathrm{~d} t \ll q^{1 / 4+\varepsilon}
\end{aligned}
$$

Blomer derived (among other thing)

$$
L\left(1 / 2, \varphi \cdot \chi_{q}\right) \ll_{\varphi} q^{5 / 8+\varepsilon}
$$

for $\varphi=\operatorname{sym}^{2} g$ and $\chi_{q}^{2}=1$.
Question: How to extend the results to more general φ and χ ?

Self-dual case: a result of Blomer

Let $\chi \bmod q$ be a primitive Dirichlet character. Let $\varphi \in \mathrm{GL}_{3}(\mathbb{Z})$ be a fixed Hecke-Maass cusp form. Using a first moment method (à la Xiaoqing Li)

$$
\begin{aligned}
& \frac{1}{q} \sum_{f_{j} \in \mathcal{B}(q)}\left(1+\left|t_{j}\right|\right)^{-B} L\left(1 / 2, \varphi \times f_{j} \cdot \chi\right) \\
& \quad+\frac{1}{q} \int_{-\infty}^{\infty} \frac{|t|^{2}}{(1+|t|)^{B}}|L(1 / 2+i t, \varphi \cdot \chi)|^{2} \mathrm{~d} t \ll q^{1 / 4+\varepsilon},
\end{aligned}
$$

Blomer derived (among other thing)

$$
L\left(1 / 2, \varphi \cdot \chi_{q}\right)<_{\varphi} q^{5 / 8+\varepsilon}
$$

for $\varphi=\operatorname{sym}^{2} g$ and $\chi_{q}^{2}=1$.
Question: How to extend the results to more general φ and χ ?

Why the t-aspect approach fails?

Recall in his [III], Munshi used Kloosterman's circle method + "conductor-lowering" trick (removed by Aggarwal later)

$$
\frac{1}{K} \int_{\mathbb{R}} V\left(\frac{v}{K}\right)\left(\frac{n}{r}\right)^{i v} \mathrm{~d} v \approx 1_{|n-r|<N / K}
$$

to obtain $L(1 / 2+i t, \varphi) \ll{ }_{\varphi} t^{3 / 4-\delta}$. (See lecture by Jesse Jääsaari.) Such a feature does not exist in the q-aspect case, i.e., we would need

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) \chi(n)=\sum_{n \sim N} \lambda_{\varphi}(1, n) \sum_{r \sim N} \chi(r) \delta\left(\frac{n-r}{\ell}, 0\right) \cdot 1_{\ell \mid(n-r)}
$$

for some $\ell \mid q$ and then apply DFI to detect $\delta((n-r) / \ell, 0)$. This is possible only if the moduli q are composite (e.g., $q=q_{1} q_{2}$ or $q=p^{r}$.
It was unclear how to extend the t-aspect approach to the q-aspect case (with q prime).

Character twists of GL_{3} : Munshi's result

Munshi took a different approach and showed

Theorem (Munshi, 15'-Annals +16'-preprint)

Let φ be a $S L_{3}(\mathbb{Z})$-invariant cusp form. Let q be a prime. Let $\chi(\bmod q)$ be primitive Dirichlet characters. Then

$$
L(1 / 2, \varphi \cdot \chi) \ll_{\varphi} q^{3 / 4-\delta+o(1)}, \delta=1 / 308
$$

Munshi's proof uses

- a variant of the DFI δ-symbol method (via Petersson trace formula), Voronoi summation, reciprocity for Kloosterman fractions $\left(e\left(\frac{n \bar{m}}{q}\right)=e\left(-\frac{n \bar{q}}{m}\right) e\left(\frac{n}{q m}\right)\right)$, and Cauchy-Schwarz.
- multiplicativity of Dirichlet characters, so that "amplification" is possible.
Later, Holowinsky and Nelson found a simplification of Munshi's approach, leading to:

Character twists of GL_ : HN's improvement

Theorem (Holowinsky-Nelson, 2018)

Same notation as above. Then

$$
L(1 / 2, \varphi \cdot \chi) \ll \varphi q^{3 / 4-\delta+o(1)}, \delta=1 / 36
$$

- Their proof removed the use of the Petersson δ-symbol.
- This was extended to general trace functions K by Kowalski-L.-Michel-Sawin, who showed that

$$
\sum_{n \geq 1} \lambda_{\varphi}(1, n) K(n) V\left(\frac{n}{N}\right)=o(N)
$$

as long as $N \gg q^{4 / 3}$ and $\|\widehat{K}\|_{\infty} \ll 1$. Here

$$
\widehat{K}(z)=\frac{1}{q^{1 / 2}} \sum_{x(q)} K(x) e\left(\frac{x z}{q}\right)
$$

denotes the (discrete) Fourier transform of K.
Below we sketch Munshi's approach and HN's simplification.

proof preparation: Poisson \& Voronoi summations

Let $K(n ; q)$ be a q-periodic function.
Lemma (Poisson summation: GL_{1})

$$
\sum_{n \sim N} K(n ; q) \approx \frac{N}{\sqrt{q}} \sum_{\tilde{n} \ll \frac{q}{N}} \widehat{K}(\tilde{n} ; q),
$$

where $\widehat{K}(\tilde{n} ; q)=\frac{1}{\sqrt{q}} \sum_{x(q)} K(x ; q) e\left(\frac{x \tilde{n}}{q}\right)$.
Let

$$
K_{l}(m ; q):=\frac{1}{q^{i \frac{1-1}{2}}} \sum_{x_{1}, \cdots, x_{i-1}(q)} e\left(\frac{x_{1}+\cdots+m \overline{\bar{x}_{1} x_{2} \cdots x_{i-1}}}{q}\right)
$$

be (i-1)-dim'I normalized hyper-Kloosterman sums.
Lemma (Voronoi summation: $\mathrm{GL}_{\mathrm{d}}(\mathbb{Z})$-case)

$$
\sum_{n \sim N} \frac{\lambda_{F}(n) K I_{i}(a n ; q)}{\sqrt{n}} \approx \sum_{\tilde{n} \ll \frac{q^{d}}{N}} \frac{\overline{\lambda_{F}(\tilde{n})} K I_{d-i}(\bar{a} \tilde{n} ; q)}{\sqrt{\tilde{n}}}
$$

Recap of versions of delta-symbol

For $-N \leq n \leq N$, to detect $\delta(n, 0)$, we have

- "trival" δ-symbol

$$
\delta(n, 0)=\frac{1}{c} \sum_{a(c)} e\left(\frac{a n}{c}\right), \quad \text { if } c>|n| ;
$$

application: subconvexity for $L(1 / 2+i t, f \cdot \chi)$ (Burgess-Weyl type), $L(1 / 2, f \times g)$, etc.

- Jutila δ-symbol

$$
\delta(n, 0) \approx \frac{1}{|\mathcal{C}|^{2}} \sum_{c \in \mathcal{C}} \sum_{a(c)}^{\star} e\left(\frac{a n}{c}\right) \frac{1}{2 \delta} \int_{-\delta}^{\delta} e(n x) \mathrm{d} x+\text { "error"; }
$$

application: subconvexity for $L(1 / 2+i t, f . \chi), \mathrm{GL}_{3} \times \mathrm{GL}_{2}$ shifted convolution.

Recap of versions of delta-symbol (cont)

- Kloosterman δ-symbol

$$
\delta(n, 0)=2 \operatorname{Re} \sum_{c \leq C<a \leq c+C} \sum_{c a}^{\star} \frac{1}{c} e\left(\frac{\bar{a} n}{c}\right) \int_{0}^{1} e\left(-\frac{n x}{c a}\right) \mathrm{d} x ;
$$

application: quaternary quadratic forms, subconvexity for $L(1 / 2+i t, \varphi)$, etc.

- DFI δ-symbol

$$
\delta(n, 0)=\frac{1}{C} \sum_{1 \leq c \leq C} \frac{1}{c} \sum_{a(c)}^{\star} \underbrace{e\left(\frac{a n}{c}\right)}_{\text {arithmetic }} \int_{\mathbb{R}} g(c, x) \underbrace{e\left(\frac{n x}{c C}\right)}_{\text {archimedean }} \mathrm{d} x ;
$$

various of applications...
and other versions...

proof preparation: Petersson δ-symbol

Iwaniec (97', "Topics") interpreted the Petersson formula
$\sum_{f \in \mathcal{B}_{k}(m, \psi)} \omega_{f}^{-1} \overline{\lambda_{f}(r)} \lambda_{f}(n)=\delta(r, n)+2 \pi i^{-k} \sum_{c=1}^{\infty} \frac{S_{\psi}(r, n ; c m)}{c m} J_{k-1}\left(\frac{4 \pi \sqrt{r n}}{c m}\right)$
as a spectral decomposition of $\delta(r, n)$, and performed averaging over the weight k to derive applications.
Here

$$
S_{\psi}(r, n ; c)=\sum_{x \bmod c}^{\star} \psi(x) e\left(\frac{r x+n \bar{x}}{c}\right) .
$$

Munshi wrote

For the level-aspect problems, one has the flexibility of performing averages over ψ and the level m (rather than over k).

proof preparation: Petersson δ-symbol

Iwaniec (97', "Topics") interpreted the Petersson formula

$$
\sum_{f \in \mathcal{B}_{k}(m, \psi)} \omega_{f}^{-1} \overline{\lambda_{f}(r)} \lambda_{f}(n)=\delta(r, n)+2 \pi i^{-k} \sum_{c=1}^{\infty} \frac{S_{\psi}(r, n ; c m)}{c m} J_{k-1}\left(\frac{4 \pi \sqrt{r n}}{c m}\right)
$$

as a spectral decomposition of $\delta(r, n)$, and performed averaging over the weight k to derive applications.
Here

$$
S_{\psi}(r, n ; c)=\sum_{x \bmod c}^{\star} \psi(x) e\left(\frac{r x+n \bar{x}}{c}\right) .
$$

Munshi wrote
$\delta(r, n)=\sum_{f \in \mathcal{B}_{k}(m, \psi)} \omega_{f}^{-1} \overline{\lambda_{f}(r)} \lambda_{f}(n)-2 \pi i^{-k} \sum_{c=1}^{\infty} \frac{S_{\psi}(r, n ; c m)}{c m} J_{k-1}\left(\frac{4 \pi \sqrt{r n}}{c m}\right)$.
For the level-aspect problems, one has the flexibility of performing averages over ψ and the level m (rather than over k).

Averaging over Petersson formula

For $\chi \bmod q$, to show

$$
L(1 / 2, \varphi \cdot \chi) \ll \varphi q^{3 / 4-\delta}
$$

By Approx. FE, it suffices to show

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) \chi(n) \lll \varphi N^{1-\delta^{\prime}}, \quad N \ll q^{3 / 2}
$$

Munshi (16'-preprint) took the following averages over ψ and m ($=p q$):

$$
\begin{aligned}
& \delta(r, n \ell)=\frac{1}{P^{\star}} \sum_{p \sim P} \sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \sum_{\substack{ \\
\mathcal{B}_{k}(p q, \psi)}} \omega_{f}^{-1} \overline{\lambda_{f}(r)} \lambda_{f}(n \ell) \\
&-\frac{2 \pi i^{-k}}{P^{\star}} \sum_{p \sim P} \sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \sum_{c=1}^{\infty} \frac{S_{\psi}(r, n \ell ; c p q)}{c p q} J_{k-1}\left(\frac{4 \pi \sqrt{r n \ell}}{c p q}\right) .
\end{aligned}
$$

Here $P^{\star} \approx P^{2}$.

Munshi's approach: applying Petersson δ-symbol

With this expression, Munshi wrote (assume $N=q^{3 / 2}$)

$$
\begin{aligned}
\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \chi(n) & \approx \frac{1}{L} \sum_{\ell \sim L} \bar{\chi}(\ell) \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \sum_{r \sim q^{3 / 2} L} \chi(r) \delta(r, n \ell) \\
& :=\mathcal{F}^{\star}+\mathcal{O}^{\star}
\end{aligned}
$$

Rmk: the ℓ-sum is reminiscent of the amplification method; multiplicity of $\chi: \chi(n \ell)=\chi(n) \chi(\ell)$ is needed.
The Goal: To beat the bounds $\mathcal{F}^{\star}, \mathcal{O}^{\star} \ll q^{3 / 2}(\mathrm{w} /$ appropriate choices of P and L). Here

$$
\begin{aligned}
\mathcal{O}^{\star} \approx \frac{1}{P^{2} L} & \sum_{p \sim P} \sum_{\ell \sim L} \bar{\chi}(\ell) \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \sum_{r \sim q^{3 / 2} L} \chi(r) \\
& \sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \sum_{c \ll \sqrt{q} L / P} \frac{S_{\psi}(r, n \ell ; c p q)}{c p q} J_{k-1}\left(\frac{4 \pi \sqrt{r n \ell}}{c p q}\right),
\end{aligned}
$$

and $\mathcal{F}^{\star}=($ next slide $)$.

Munshi's approach: treatment of \mathcal{F}^{\star}

$$
\left.\begin{array}{rl}
\mathcal{F}^{\star} \approx \frac{1}{P^{2} L} \sum_{p \sim P} & \sum_{\ell \sim L} \bar{\chi}(\ell)
\end{array} \sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \sum_{f \in \mathcal{B}_{k}(p q, \psi)} \omega_{f}^{-1}\right] \quad \sum_{r \sim q^{3 / 2} L} \chi(r) \overline{\lambda_{f}(r)} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \lambda_{f}(n \ell) .
$$

Munshi took the following steps to treat \mathcal{F}^{\star}.

- Functional equations to the n and r-sums.
- Petersson formula over f. No diagonal contribution; only left with the off-diagonal terms $\sum_{c \ll \sqrt{q} P^{2}}$. Sum over ψ and simplify the sum.
- GL3-Voronoi over the n-sum with modulus c.
- Poisson summation over the c-sum to arrive at

$$
\sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L n \sim P^{3}} \sum_{\varphi}(1, n) \bar{\chi}(r l \bar{p}) S(-q n \bar{p}, 1 ; r \ell) .
$$

- Cauchy-Schwarz with p, ℓ-sums inside the square $\sum_{n} \sum_{r}\left|\sum_{n} \sum_{\ell} \bar{\chi}(\ell \bar{p}) S(-q n \bar{p}, 1 ; r \ell)\right|^{2}$, followed with Poisson in

Munshi's approach: treatment of \mathcal{F}^{\star}

$$
\begin{aligned}
\mathcal{F}^{\star} \approx \frac{1}{P^{2} L} \sum_{p \sim P} & \sum_{\ell \sim L} \bar{\chi}(\ell) \sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \sum_{f \in \mathcal{B}_{k}(p q, \psi)} \omega_{f}^{-1} \\
& \sum_{r \sim q^{3 / 2} L} \chi(r) \overline{\lambda_{f}(r)} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \lambda_{f}(n \ell) .
\end{aligned}
$$

Munshi took the following steps to treat \mathcal{F}^{\star}.

- Functional equations to the n and r-sums.
- Petersson formula over f. No diagonal contribution; only left with the off-diagonal terms $\sum_{c \ll \sqrt{q} P^{2}}$. Sum over ψ and simplify the sum.
- GL_{3}-Voronoi over the n-sum with modulus c.
- Poisson summation over the c-sum to arrive at

$$
\sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim P^{3}} \lambda_{\varphi}(1, n) \bar{\chi}(r \ell \bar{p}) S(-q n \bar{p}, 1 ; r \ell) .
$$

- Cauchy-Schwarz with p, ℓ-sums inside the square $\sum_{n} \sum_{r}\left|\sum_{p} \sum_{\ell} \bar{\chi}(\ell \bar{p}) S(-q n \bar{p}, 1 ; r \ell)\right|^{2}$, followed with Poisson in n-sum.

Holowinsky's initial alternative treatment of \mathcal{F}^{\star}

- Functional equation to the r-sum only.
- Petersson formula over f. Simplifying the sum gives

$$
\sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \bar{\chi}(r \ell \bar{p}) S(n r \ell \bar{p}, 1 ; q)
$$

- GL_{3}-Voronoi over the n-sum to get

$$
\mathcal{F}^{q}=\frac{1}{P^{2}} \sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \bar{\chi}(r \ell \bar{p}) e\left(\frac{n \overline{r \ell} p}{q}\right) .
$$

- Reciprocity e $\left(\frac{n \bar{\ell} \ell p}{q}\right)=e\left(-\frac{n p \bar{q}}{r \ell}\right) e\left(\frac{n p}{r \ell q}\right)$, and then Voronoi in the n-sum with modulus $r \ell$, to arrive at

$$
\sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim P^{3}} \lambda_{\varphi}(1, n) \bar{\chi}(r \ell \bar{p}) S(-q n \bar{p}, 1 ; r \ell)
$$

- Same as in Munshi's.

Holowinsky-Nelson's observation

HN observed: if one applied Poisson summation over the r-sum in \mathcal{F}^{q}, the zero frequency $\tilde{r}=0$ contributes our initial object of interest $\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \chi(n)$, and the non-zero frequencies $\tilde{r} \neq 0$ give a sum \mathcal{O}^{q} (similar to Munshi's \mathcal{O}^{\star}-term).
i.e., they discovered the relation

$$
\begin{aligned}
\mathcal{F}^{q}= & \frac{1}{P^{2}} \sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \chi(r \ell \bar{p}) e\left(\frac{n \overline{r \ell} p}{q}\right) \\
& \approx \varepsilon_{\bar{\chi}} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \chi(n)+\mathcal{O}^{q},
\end{aligned}
$$

where

$$
\mathcal{O}^{q}=\frac{1}{P L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \sum_{p \sim P} \sum_{\ell \sim L} \sum_{0 \neq|\tilde{r}| \ll \sqrt{q} L / P} \frac{S_{\bar{\chi}}(n, \tilde{r} p \bar{\ell} ; q)}{\sqrt{q}} .
$$

\rightsquigarrow one can eliminate Munshi's previous steps (particularly the Petersson δ-symbol), and begin just with the sum \mathcal{F}^{q}.

One-page summary of HN's simplification $(\chi \rightsquigarrow K \bmod q)$

Poisson summation gives

$$
\frac{L}{P} \sum_{r \sim \sqrt{q} P / L} \widehat{K}(-\overline{r \ell} p) e\left(\frac{\overline{r \ell} n p}{q}\right)=K(n)+\sum_{0 \neq \tilde{r}<\sqrt{q} L / P} \widetilde{S}_{\widehat{K}}(n, \tilde{r} p \bar{\ell} ; q),
$$

where $\widetilde{S}_{\widehat{K}}(n, \tilde{r} p \bar{\ell} ; q):=\frac{1}{\sqrt{q}} \sum_{z(q)} \widehat{K}(z) e\left(\frac{-z n}{q}\right) e\left(\frac{-\bar{z} \tilde{q} p \bar{\ell}}{q}\right)$. Recall here $\widehat{K}(z)=\frac{1}{q^{1 / 2}} \sum_{x(q)} K(x) e\left(\frac{z x}{q}\right)$.
Then

$$
\mathcal{F}_{q}=\sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) K(n)+\mathcal{O}_{q}
$$

where

$$
\mathcal{F}_{q}:=\frac{1}{P^{2}} \sum_{p \sim P} \sum_{\ell \sim L} \sum_{r \sim \sqrt{q} P / L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \widehat{K}(-\overline{r \ell} p) e\left(\frac{\overline{r \ell} p n}{q}\right) ;
$$

and

$$
\mathcal{O}_{q}:=\frac{1}{P L} \sum_{n \sim q^{3 / 2}} \lambda_{\varphi}(1, n) \sum_{p \sim P} \sum_{\ell \sim L} \sum_{0 \neq \tilde{r}<\sqrt{q} L / P} \widetilde{S}_{\widehat{K}}(n, \tilde{r} p \bar{\ell} ; q) .
$$

Munshi and HN's treatment for \mathcal{F}_{q} and \mathcal{O}_{q}

- Treatment of \mathcal{O}_{q} : Cauchy-Schwarz

$$
\mathcal{O}_{q} \ll \frac{1}{P L}\left(\sum_{n \sim q^{3 / 2}}\left|\lambda_{\varphi}(1, n)\right|^{2}\right)^{1 / 2}\left(\sum_{n \sim q^{3 / 2}}\left|\sum_{p} \sum_{\ell} \sum_{\tilde{r} \neq 0} \widetilde{S}_{\widehat{K}}(n, \tilde{r} p \bar{\ell} ; q)\right|^{2}\right)^{1 / 2}
$$

Open the square and Poisson in the n-variable $\ll q^{3 / 2}\|\widehat{K}\|_{\infty} \frac{q^{1 / 4}}{P}$.

- Treatment of \mathcal{F}_{q} : Reciprocity $e\left(\frac{\overline{r \ell} n p}{q}\right)=e\left(-\frac{n p \bar{q}}{r \ell}\right) e\left(\frac{n p}{r \ell q}\right)$, then Voronoi $\sum_{n} \lambda_{\varphi}(1, n) e\left(-\frac{n p \bar{q}}{r \ell}\right) \rightarrow \sum_{n} \overline{\lambda_{\varphi}(1, n)} \mathrm{Kl}_{2}(\bar{p} q n ; r \ell)$, to get

$$
\begin{aligned}
\mathcal{F}_{q} & =\frac{q^{3 / 4}}{P^{7 / 2}} \sum_{n \sim P^{3}} \sum_{r \sim \sqrt{q} P / L} \overline{\lambda_{\varphi}(1, n)} \sum_{p \sim P} \sum_{\ell \sim L} \widehat{K}(-\overline{r \ell} p) \mathrm{Kl}_{2}(\bar{p} q n ; r \ell) \\
& \ll \frac{q^{3 / 4}}{P^{7 / 2}}\left(\sum_{n \sim P^{3}} \sum_{r}\left|\overline{\lambda_{\varphi}(1, n)}\right|^{2}\right)^{1 / 2}\left(\sum_{n \sim P^{3}} \sum_{r}\left|\sum_{p} \sum_{\ell}(\cdots)\right|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Open the square and apply Poisson in the n-sum, $\ll q^{3 / 2}\|\widehat{K}\|_{\infty}\left(\frac{P}{q^{1 / 4 L^{1 / 2}}}+\left(\frac{P L}{q^{1 / 2}}\right)^{1 / 4}\right)$.

- Balance the parameters $\Rightarrow \mathcal{F}_{q}+\mathcal{O}_{q} \ll\|\widehat{K}\|_{\infty} q^{3 / 2-\delta}$; done.

Comparisons: character twists of $\mathrm{GL}_{\mathrm{d}}(d=1,2,3 \times 2)$

Question: What the shortest range is for getting cancellation? i.e., how small η can we take so that

$$
\sum_{n \sim(\sqrt{\text { Cond }})^{n}} \lambda_{F}(n) K(n)=o(N) ?
$$

- GL 1_{1} case. Pólya-Vinogradov: $\sum_{n<N} \chi(n) \ll \sqrt{q} \log q$; Burgess: $\sum_{n<N} \chi(n)$ has cancellation when $N \gg q^{1 / 4}$.
- GL 2 case. Fouvry-Kowalski-Michel (aprés Bykovskiĭ):

$$
\sum_{n \sim N} \lambda_{f}(n) K(n) V\left(\frac{n}{N}\right) \ll_{f, V, C(\rho)} N^{1 / 2} q^{3 / 8},
$$

hence it has cancellation when $N \gg q^{3 / 4}$.

- $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$ case. Sharma and L.-Michel-Sawin show

$$
\sum_{r, n \geq 1} \lambda_{\varphi}(r, n) \lambda_{f}(n) K(n) V\left(\frac{r^{2} n}{N}\right)=o(N)
$$

when $N \gg q^{3-1 / 4}=\left(q^{3}\right)^{\frac{11}{12}}$.

Comparisons: character twists of $\mathrm{GL}_{\mathrm{d}}(d=1,2,3 \times 2)$

Question: What the shortest range is for getting cancellation? i.e., how small η can we take so that

$$
\sum_{n \sim(\sqrt{\text { Cond }})^{n}} \lambda_{F}(n) K(n)=o(N) ?
$$

- GL ${ }_{1}$ case. Pólya-Vinogradov: $\sum_{n<N} \chi(n) \ll \sqrt{q} \log q$; Burgess: $\sum_{n<N} \chi(n)$ has cancellation when $N \gg q^{1 / 4}$.
- GL_{2} case. Fouvry-Kowalski-Michel (aprés Bykovskiĭ):

$$
\sum_{n \sim N} \lambda_{f}(n) K(n) V\left(\frac{n}{N}\right) \ll_{f, V, C(\rho)} N^{1 / 2} q^{3 / 8}
$$

hence it has cancellation when $N \gg q^{3 / 4}$.

- $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$ case. Sharma and L.-Michel-Sawin show

$$
\sum_{r, n \geq 1} \lambda_{\varphi}(r, n) \lambda_{f}(n) K(n) V\left(\frac{r^{2} n}{N}\right)=o(N)
$$

when $N \gg q^{3-1 / 4}=\left(q^{3}\right)^{\frac{11}{12}}$.

"natural" threshold for shortest length of cancellation?

- Guess: Maybe a "natural" proof in all these problems would produce an exponent $\frac{2 d-1}{2 d}$ (s.t. $\left.N \gg(\sqrt{\text { Cond }})^{\frac{2 d-1}{2 d}}\right)$?
This holds for $d=1,2,3 \times 2$.
- Issue: The $d=3$ case does not match this bound yet: a "natural" proof should give $N \gg q^{5 / 4}=\left(q^{\frac{3}{2}}\right)^{\frac{5}{6}}$.

Recall Holowinsky-Nelson and KLMS obtain

$$
\sum_{n \geq 1} \lambda_{\varphi}(1, n) K(n) V\left(\frac{n}{N}\right) \ll \varphi_{\varphi, V} q^{2 / 9} N^{5 / 6}\|\widehat{K}\|_{\infty}
$$

showing cancellation for $N \gg q^{4 / 3}$. Though this is sufficient for subconvexity, for other applications it is desirable to go down further. Example: If one was able to obtain cancellation for $N \gg q$, then taking $K(n)=K I_{3}(a n ; q)$ this would imply $\left\{\lambda_{\varphi}(1, n): n \leq X\right\}$ being equidistributed in $n \equiv \operatorname{arod} q$, for $q<X^{\vartheta_{3}}$ with $\vartheta_{3}=1 / 2+\eta$.

Limitation of the Munshi-HN approach

- By specifying Sharma's $f \in \mathrm{GL}_{2}$ to Eisenstein series, one gets:

$$
\sum_{n \geq 1} \lambda_{\varphi}(1, n) \chi(n) V\left(\frac{n}{N}\right) \ll N^{1-\delta^{\prime}}
$$

when $N \gg q^{11 / 8}=\left(q^{\frac{3}{2}}\right)^{\frac{11}{12}}$, improvement over Holowinsky-Nelson's $N \gg q^{4 / 3}$ (and also the subconvex-exponent).

- The approach of Munshi and HN does not make heavy use of the underlying geometry of χ (e.g., Weil's $R H$). Instead of encountering

$$
\sum_{x \bmod q} S_{\bar{\chi}}\left(x, \tilde{r} p_{1} \overline{\ell_{1}} ; q\right) \overline{S_{\bar{\chi}}\left(x, \tilde{r} p_{2} \bar{\ell}_{2} ; q\right)} e\left(\frac{x \tilde{n}}{q}\right)
$$

with $\tilde{n} \neq 0$, one only needs to deal with the case $\tilde{n}=0$, in contrast to the GL_{2} and $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$-scenario.

Problem: Can one find a new proof for $\sum_{n \sim N} \lambda_{\varphi}(1, n) K(n)=o(N)$ that shows cancellation for $N>q^{5 / 4}$? Or at least improving $N>q^{4 / 3}$?

Limitation of the Munshi-HN approach

- By specifying Sharma's $f \in \mathrm{GL}_{2}$ to Eisenstein series, one gets:

$$
\sum_{n \geq 1} \lambda_{\varphi}(1, n) \chi(n) V\left(\frac{n}{N}\right) \ll N^{1-\delta^{\prime}}
$$

when $N \gg q^{11 / 8}=\left(q^{\frac{3}{2}}\right)^{\frac{11}{12}}$, improvement over Holowinsky-Nelson's $N \gg q^{4 / 3}$ (and also the subconvex-exponent).

- The approach of Munshi and HN does not make heavy use of the underlying geometry of χ (e.g., Weil's $R H$). Instead of encountering

$$
\sum_{x \bmod q} S_{\bar{\chi}}\left(x, \tilde{r} p_{1} \overline{\ell_{1}} ; q\right) \overline{S_{\bar{\chi}}\left(x, \tilde{r} p_{2} \bar{\ell}_{2} ; q\right)} e\left(\frac{x \tilde{n}}{q}\right)
$$

with $\tilde{n} \neq 0$, one only needs to deal with the case $\tilde{n}=0$, in contrast to the GL_{2} and $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$-scenario.

Problem: Can one find a new proof for $\sum_{n \sim N} \lambda_{\varphi}(1, n) K(n)=o(N)$ that shows cancellation for $N>q^{5 / 4}$? Or at least improving $N>q^{4 / 3}$?

Limitation of the Munshi-HN approach

Examples with better saving.

- In the self-dual case, Blomer proved much stronger bounds

$$
L\left(1 / 2, \operatorname{sym}^{2} g \cdot \chi_{q}\right) \ll q^{3 / 4-1 / 8+\varepsilon}, \quad L\left(1 / 2, \operatorname{sym}^{2} g \times f_{j} \cdot \chi_{q}\right) \ll q^{3 / 2-1 / 4+\varepsilon} .
$$

- If $q=p^{r}, p$ fixed prime and r large, then Sun-Zhao:

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) \chi(n) \ll_{p, \varphi} N^{1 / 2} q^{3 / 4-3 / 40}
$$

showing cancellation for $N>\left(q^{\frac{3}{2}}\right)^{\frac{9}{10}}$, improving prime q case.

- In the t-aspect case, Aggarwal (improving Munshi's [III]):

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) n^{i t} \ll_{\varphi} N^{3 / 4} t^{3 / 10}
$$

showing cancellation for $N>t^{\frac{6}{5}}$ (note: $\frac{6}{5}<\frac{5}{4}$).
But for prime q, this remains unclear...

Limitation of the Munshi-HN approach

Examples with better saving.

- In the self-dual case, Blomer proved much stronger bounds

$$
L\left(1 / 2, \operatorname{sym}^{2} g \cdot \chi_{q}\right) \ll q^{3 / 4-1 / 8+\varepsilon}, \quad L\left(1 / 2, \operatorname{sym}^{2} g \times f_{j} \cdot \chi_{q}\right) \ll q^{3 / 2-1 / 4+\varepsilon} .
$$

- If $q=p^{r}, p$ fixed prime and r large, then Sun-Zhao:

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) \chi(n)<_{p, \varphi} N^{1 / 2} q^{3 / 4-3 / 40}
$$

showing cancellation for $N>\left(q^{\frac{3}{2}}\right)^{\frac{9}{10}}$, improving prime q case.

- In the t-aspect case, Aggarwal (improving Munshi's [III]):

$$
\sum_{n \sim N} \lambda_{\varphi}(1, n) n^{i t} \ll_{\varphi} N^{3 / 4} t^{3 / 10}
$$

showing cancellation for $N>t^{\frac{6}{5}}$ (note: $\frac{6}{5}<\frac{5}{4}$).
But for prime q, this remains unclear...
Why one cares about cancellation in shorter ranges?

Level of distribution: finer question beyond subconvexity

"level of distribution" ϑ_{d} for GL_{d} Hecke eigenvalues $\left\{\lambda_{F}(n): n \leq X\right\}$ in arithmetic progressions $n \equiv \operatorname{arod} q$:

$$
\sum_{\substack{n \leq X \\ n \equiv a(q)}} \lambda_{F}(n)-\frac{1}{\varphi(q)} \sum_{\substack{n \leq X \\(n, q)=1}} \lambda_{F}(n) \ll F, A \frac{X}{q}(\log X)^{-A}
$$

for $q \leq X^{\vartheta_{d}}$.
By applying functional eq./Voronoi, one can take $\vartheta_{d}=\frac{2}{d+1}-\varepsilon$. GRH $\Rightarrow \vartheta_{d}=1 / 2-\varepsilon$.
To improve $\vartheta_{d}=\frac{2}{d+1}-\varepsilon$ for $F \in \mathrm{GL}_{\mathrm{d}}$, one would need

$$
\sum_{n \sim N} \lambda_{F}(n) \mathrm{Kl}_{d}(a n ; q) V\left(\frac{n}{N}\right)=o(N)
$$

for $N \approx q^{\frac{d}{2}-\frac{1}{2}}$. However, this seems only known when F are certain Eisenstein series (e.g., $\lambda_{F}(n)=\sum_{m \mid n} \lambda_{f}(m), \tau_{d}(n)$, etc).

Some other questions

- How to extend Conrey-Iwaniec and Petrow-Young's Weyl bound results to trace functions $K \bmod q$:

$$
\sum_{n \geq 1} \lambda_{f}(n) K(n) V\left(\frac{n}{q}\right)<_{f} q^{1-\delta+o(1)}, \delta=1 / 6 ?
$$

(Maybe for special trace functions (e.g. $\left.K(n)=e\left(\frac{\bar{n}}{q}\right)\right)$ first?)

- Will it be possible (by "shortening" the family) to establish sub-Weyl for twists of GL_{2} for composite moduli ($q=q_{1} q_{2}$ or $q=p^{r}$, say)

$$
L(1 / 2, f \cdot \chi) \ll_{f} q^{1 / 3-\delta} ?
$$

- Adelize the delta symbols, so that these results can be extended to number fields?

Leave it to you!

References

- Blomer, Subconvexity for twisted L-functions on GL(3), Amer. J. Math. (2012)
- Fouvry-Kowalski-Michel, Algebraic twists of modular forms and Hecke orbits, GAFA (2015)
- Holowinsky-Nelson, Subconvex bounds on GL(3) via degeneration to frequency zero, Math. Ann. (2018)
- Kowalski-Lin-Michel-Sawin, Periodic twists of GL_{3}-automorphic forms, Forum Math. Sigma (2020)
- Lin-Michel-Sawin, Algebraic twists of $\mathrm{GL}_{3} \times \mathrm{GL}_{2}$ L-functions, arXiv:1912.09473 (2019)
- Munshi, The circle method and bounds for L-functions-IV: for twists of GL(3) L-functions, Ann. of Math. (2015)
- Munshi, Twists of GL(3) L-functions, arXiv:1604.08000 (2016)
- Sharma, Subconvexity for $G L(3) \times G L(2)$ twists in level aspect, arXiv: 1906.09493 (2019)

