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Self-dual case: a result of Blomer

Let χ mod q be a primitive Dirichlet character. Let ϕ ∈ GL3(Z)
be a fixed Hecke–Maass cusp form.
Using a first moment method (à la Xiaoqing Li)

1

q

∑
fj∈B(q)

(1 + |tj |)−BL(1/2, ϕ× fj .χ)

+
1

q

∫ ∞
−∞

|t|2

(1 + |t|)B
|L(1/2 + it, ϕ.χ)|2dt � q1/4+ε,

Blomer derived (among other thing)

L(1/2, ϕ.χq)�ϕ q5/8+ε,

for ϕ = sym2g and χ2
q = 1.

Question: How to extend the results to more general ϕ and χ?
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Why the t-aspect approach fails?

Recall in his [III], Munshi used Kloosterman’s circle method +
“conductor-lowering” trick (removed by Aggarwal later)

1

K

∫
R
V
( v
K

)(n
r

)iv
dv ≈ 1|n−r |<N/K

to obtain L(1/2 + it, ϕ)�ϕ t3/4−δ. (See lecture by Jesse Jääsaari.)
Such a feature does not exist in the q-aspect case, i.e., we would
need∑

n∼N
λϕ(1, n)χ(n) =

∑
n∼N

λϕ(1, n)
∑
r∼N

χ(r)δ
(n − r

`
, 0
)
· 1
`|(n−r)

for some `|q and then apply DFI to detect δ
(
(n − r)/`, 0

)
. This is

possible only if the moduli q are composite (e.g., q = q1q2 or
q = pr ).
It was unclear how to extend the t-aspect approach to the
q-aspect case (with q prime).



Character twists of GL3: Munshi’s result

Munshi took a different approach and showed

Theorem (Munshi, 15’-Annals +16’-preprint)

Let ϕ be a SL3(Z)-invariant cusp form. Let q be a prime. Let
χ (mod q) be primitive Dirichlet characters. Then

L(1/2, ϕ.χ)�ϕ q3/4−δ+o(1), δ = 1/308.

Munshi’s proof uses

a variant of the DFI δ-symbol method (via Petersson trace
formula), Voronoi summation, reciprocity for Kloosterman
fractions (e(nm̄q ) = e(−nq̄

m )e( n
qm )), and Cauchy–Schwarz.

multiplicativity of Dirichlet characters, so that “amplification”
is possible.

Later, Holowinsky and Nelson found a simplification of Munshi’s
approach, leading to:



Character twists of GL3: HN’s improvement

Theorem (Holowinsky–Nelson, 2018)

Same notation as above. Then

L(1/2, ϕ.χ)�ϕ q3/4−δ+o(1), δ = 1/36.

Their proof removed the use of the Petersson δ-symbol.

This was extended to general trace functions K by
Kowalski–L.–Michel–Sawin, who showed that∑

n≥1

λϕ(1, n)K (n)V
( n
N

)
= o(N)

as long as N � q4/3 and ‖K̂‖∞ � 1. Here

K̂ (z) =
1

q1/2

∑
x(q)

K (x)e
(xz
q

)
denotes the (discrete) Fourier transform of K .

Below we sketch Munshi’s approach and HN’s simplification.



proof preparation: Poisson & Voronoi summations

Let K (n; q) be a q-periodic function.

Lemma (Poisson summation: GL1)∑
n∼N

K (n; q) ≈ N
√
q

∑
ñ� q

N

K̂ (ñ; q),

where K̂ (ñ; q) = 1√
q

∑
x(q) K (x ; q)e

(
xñ
q

)
.

Let

Kli (m; q) :=
1

q
i−1

2

∑
x1,··· ,xi−1(q)

e
(x1 + · · ·+ mx1x2 · · · xi−1

q

)
be (i − 1)-dim’l normalized hyper-Kloosterman sums.

Lemma (Voronoi summation: GLd(Z)-case)∑
n∼N

λF (n)Kli (an; q)√
n

≈
∑
ñ� qd

N

λF (ñ)Kld−i (āñ; q)√
ñ

.



Recap of versions of delta-symbol

For −N ≤ n ≤ N, to detect δ(n, 0), we have

“trival” δ-symbol

δ(n, 0) =
1

c

∑
a(c)

e
(an
c

)
, if c > |n|;

application: subconvexity for L(1/2 + it, f .χ) (Burgess-Weyl
type), L(1/2, f × g), etc.

Jutila δ-symbol

δ(n, 0) ≈ 1

|C|2
∑
c∈C

∑?

a(c)

e
(an
c

) 1

2δ

∫ δ

−δ
e(nx)dx + “error”;

application: subconvexity for L(1/2 + it, f .χ), GL3 ×GL2

shifted convolution.



Recap of versions of delta-symbol (cont)

Kloosterman δ-symbol

δ(n, 0) = 2Re
∑∑?

c≤C<a≤c+C

1

ca
e
( ān
c

) ∫ 1

0
e
(
−nx

ca

)
dx ;

application: quaternary quadratic forms, subconvexity for
L(1/2 + it, ϕ), etc.

DFI δ-symbol

δ(n, 0) =
1

C

∑
1≤c≤C

1

c

∑?

a(c)

e
(an
c

)
︸ ︷︷ ︸
arithmetic

∫
R
g(c, x) e

( nx
cC

)
︸ ︷︷ ︸

archimedean

dx ;

various of applications...

and other versions...



proof preparation: Petersson δ-symbol

Iwaniec (97’, “Topics”) interpreted the Petersson formula

∑
f∈Bk (m,ψ)

ω−1
f λf (r)λf (n) = δ(r , n) + 2πi−k

∞∑
c=1

Sψ(r , n; cm)

cm
Jk−1

(
4π
√
rn

cm

)

as a spectral decomposition of δ(r , n), and performed averaging over the
weight k to derive applications.
Here

Sψ(r , n; c) =
∑?

x mod c

ψ(x)e

(
rx + nx̄

c

)
.

Munshi wrote

δ(r , n) =
∑

f∈Bk (m,ψ)

ω−1
f λf (r)λf (n)− 2πi−k

∞∑
c=1

Sψ(r , n; cm)

cm
Jk−1

(
4π
√
rn

cm

)
.

For the level-aspect problems, one has the flexibility of performing
averages over ψ and the level m (rather than over k).
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Averaging over Petersson formula

For χ mod q, to show

L(1/2, ϕ.χ)�ϕ q3/4−δ,

By Approx. FE, it suffices to show∑
n∼N

λϕ(1, n)χ(n)�ϕ N1−δ′ , N � q3/2.

Munshi (16’-preprint) took the following averages over ψ and m
(= pq):

δ(r , n`) =
1

P?

∑
p∼P

∑
ψ mod p

ψ(−1)=−1

∑
f ∈Bk (pq,ψ)

ω−1
f λf (r)λf (n`)

− 2πi−k

P?

∑
p∼P

∑
ψ mod p

ψ(−1)=−1

∞∑
c=1

Sψ(r , n`; cpq)

cpq
Jk−1

(
4π
√
rn`

cpq

)
.

Here P? ≈ P2.



Munshi’s approach: applying Petersson δ-symbol

With this expression, Munshi wrote (assume N = q3/2)∑
n∼q3/2

λϕ(1, n)χ(n) ≈1

L

∑
`∼L

χ̄(`)
∑

n∼q3/2

λϕ(1, n)
∑

r∼q3/2L

χ(r) δ(r , n`)

:=F? +O?.

Rmk: the `-sum is reminiscent of the amplification method; multiplicity
of χ: χ(n`) = χ(n)χ(`) is needed.
The Goal: To beat the bounds F?,O? � q3/2 (w/ appropriate choices
of P and L). Here

O? ≈ 1

P2L

∑
p∼P

∑
`∼L

χ̄(`)
∑

n∼q3/2

λϕ(1, n)
∑

r∼q3/2L

χ(r)

∑
ψ mod p

ψ(−1)=−1

∑
c�√qL/P

Sψ(r , n`; cpq)

cpq
Jk−1

(
4π
√
rn`

cpq

)
,

and F? = (next slide).



Munshi’s approach: treatment of F?

F? ≈ 1

P2L

∑
p∼P

∑
`∼L

χ̄(`)
∑

ψ mod p

ψ(−1)=−1

∑
f∈Bk (pq,ψ)

ω−1
f

∑
r∼q3/2L

χ(r)λf (r)
∑

n∼q3/2

λϕ(1, n)λf (n`).

Munshi took the following steps to treat F?.

Functional equations to the n and r -sums.

Petersson formula over f . No diagonal contribution; only left with
the off-diagonal terms

∑
c�√qP2 . Sum over ψ and simplify the sum.

GL3-Voronoi over the n-sum with modulus c .

Poisson summation over the c-sum to arrive at∑
p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼P3

λϕ(1, n)χ̄(r`p̄)S(−qnp̄, 1; r`).

Cauchy–Schwarz with p, `-sums inside the square∑
n

∑
r

∣∣∑
p

∑
` χ̄(`p̄)S(−qnp̄, 1; r`)

∣∣2, followed with Poisson in
n-sum.
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Holowinsky’s initial alternative treatment of F?

Functional equation to the r -sum only.
Petersson formula over f . Simplifying the sum gives∑

p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼q3/2

λϕ(1, n)χ̄(r`p̄)S(nr`p̄, 1; q).

GL3-Voronoi over the n-sum to get

Fq =
1

P2

∑
p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼q3/2

λϕ(1, n)χ̄(r`p̄)e

(
nr`p

q

)
.

Reciprocity e
(
nr`p
q

)
= e

(
−npq̄

r`

)
e
(

np
r`q

)
, and then Voronoi in

the n-sum with modulus r`, to arrive at∑
p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼P3

λϕ(1, n)χ̄(r`p̄)S(−qnp̄, 1; r`).

Same as in Munshi’s.



Holowinsky–Nelson’s observation

HN observed: if one applied Poisson summation over the r -sum in
Fq, the zero frequency r̃ = 0 contributes our initial object of
interest

∑
n∼q3/2 λϕ(1, n)χ(n), and the non-zero frequencies r̃ 6= 0

give a sum Oq (similar to Munshi’s O?-term).
i.e., they discovered the relation

Fq =
1

P2

∑
p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼q3/2

λϕ(1, n)χ(r`p̄)e

(
nr`p

q

)
≈ εχ̄

∑
n∼q3/2

λϕ(1, n)χ(n) +Oq,

where

Oq =
1

PL

∑
n∼q3/2

λϕ(1, n)
∑
p∼P

∑
`∼L

∑
06=|r̃ |�√qL/P

Sχ̄(n, r̃ p ¯̀; q)
√
q

.

 one can eliminate Munshi’s previous steps (particularly the
Petersson δ-symbol), and begin just with the sum Fq.



One-page summary of HN’s simplification (χ K mod q)

Poisson summation gives

L

P

∑
r∼√qP/L

K̂ (−r`p)e(
r`np

q
) = K (n) +

∑
06=r̃<

√
qL/P

S̃
K̂

(n, r̃ p ¯̀; q),

where S̃
K̂

(n, r̃ p ¯̀; q) := 1√
q

∑
z(q) K̂ (z)e

(−zn
q

)
e
(−z̄ r̃p ¯̀

q

)
. Recall here

K̂ (z) = 1
q1/2

∑
x(q) K (x)e

(
zx
q

)
.

Then

Fq =
∑

n∼q3/2

λϕ(1, n)K (n) +Oq,

where

Fq :=
1

P2

∑
p∼P

∑
`∼L

∑
r∼√qP/L

∑
n∼q3/2

λϕ(1, n)K̂ (−r`p)e
( r`pn

q

)
;

and

Oq :=
1

PL

∑
n∼q3/2

λϕ(1, n)
∑
p∼P

∑
`∼L

∑
06=r̃<

√
qL/P

S̃K̂ (n, r̃ p ¯̀; q).



Munshi and HN’s treatment for Fq and Oq

Treatment of Oq: Cauchy–Schwarz

Oq �
1

PL

( ∑
n∼q3/2

|λϕ(1, n)|2
)1/2( ∑

n∼q3/2

|
∑
p

∑
`

∑
r̃ 6=0

S̃
K̂

(n, r̃ p ¯̀; q)|2
)1/2

;

Open the square and Poisson in the n-variable � q3/2‖K̂‖∞ q1/4

P .

Treatment of Fq: Reciprocity e( r`npq ) = e(−npq̄
r` )e( np

r`q ), then

Voronoi
∑

n λϕ(1, n)e(−npq̄
r` )→

∑
n λϕ(1, n)Kl2(p̄qn; r`), to get

Fq =
q3/4

P7/2

∑
n∼P3

∑
r∼√qP/L

λϕ(1, n)
∑
p∼P

∑
`∼L

K̂ (−r`p)Kl2(p̄qn; r`)

� q3/4

P7/2

( ∑
n∼P3

∑
r

|λϕ(1, n)|2
)1/2( ∑

n∼P3

∑
r

|
∑
p

∑
`

(· · · )|2
)1/2

.

Open the square and apply Poisson in the n-sum,
� q3/2‖K̂‖∞( P

q1/4L1/2 + ( PL
q1/2 )1/4).

Balance the parameters ⇒ Fq +Oq � ‖K̂‖∞q3/2−δ; done.



Comparisons: character twists of GLd (d = 1, 2, 3× 2)

Question: What the shortest range is for getting cancellation? i.e., how
small η can we take so that∑

n∼(
√

Cond)η

λF (n)K (n) = o(N)?

GL1 case. Pólya–Vinogradov:
∑

n<N χ(n)� √q log q; Burgess:∑
n<N χ(n) has cancellation when N � q1/4.

GL2 case. Fouvry–Kowalski–Michel (aprés Bykovskĭı):∑
n∼N

λf (n)K (n)V
( n
N

)
�f ,V ,C(ρ) N

1/2q3/8,

hence it has cancellation when N � q3/4.

GL3 ×GL2 case. Sharma and L.–Michel–Sawin show∑
r ,n≥1

λϕ(r , n)λf (n)K (n)V
( r2n

N

)
= o(N),

when N � q3−1/4 = (q3)
11
12 .
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“natural” threshold for shortest length of cancellation?

Guess: Maybe a “natural” proof in all these problems would

produce an exponent 2d−1
2d (s.t. N � (

√
Cond)

2d−1
2d )?

This holds for d = 1, 2, 3× 2.

Issue: The d = 3 case does not match this bound yet: a

“natural” proof should give N � q5/4 = (q
3
2 )

5
6 .

Recall Holowinsky–Nelson and KLMS obtain∑
n≥1

λϕ(1, n)K (n)V
( n
N

)
�ϕ,V q2/9N5/6‖K̂‖∞,

showing cancellation for N � q4/3. Though this is sufficient for
subconvexity, for other applications it is desirable to go down
further. Example: If one was able to obtain cancellation for
N � q, then taking K (n) = Kl3(an; q) this would imply
{λϕ(1, n) : n ≤ X} being equidistributed in n ≡ a mod q, for
q < Xϑ3 with ϑ3 = 1/2 + η.



Limitation of the Munshi-HN approach

By specifying Sharma’s f ∈ GL2 to Eisenstein series, one gets:∑
n≥1

λϕ(1, n)χ(n)V
( n
N

)
� N1−δ′ ,

when N � q11/8 = (q
3
2 )

11
12 , improvement over Holowinsky–Nelson’s

N � q4/3 (and also the subconvex-exponent).

The approach of Munshi and HN does not make heavy use of the
underlying geometry of χ (e.g., Weil’s RH). Instead of encountering∑

x mod q

Sχ̄(x , r̃ p1
¯̀
1; q)Sχ̄(x , r̃ p2

¯̀
2; q) e(

xñ

q
)

with ñ 6= 0, one only needs to deal with the case ñ = 0, in contrast
to the GL2 and GL3 ×GL2-scenario.

Problem: Can one find a new proof for∑
n∼N λϕ(1, n)K (n) = o(N) that shows cancellation for N > q5/4?

Or at least improving N > q4/3?
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Limitation of the Munshi-HN approach

Examples with better saving.

In the self-dual case, Blomer proved much stronger bounds

L(1/2, sym2g .χq)� q3/4−1/8+ε, L(1/2, sym2g×fj .χq)� q3/2−1/4+ε.

If q = pr , p fixed prime and r large, then Sun–Zhao:∑
n∼N

λϕ(1, n)χ(n)�p,ϕ N1/2q3/4−3/40,

showing cancellation for N > (q
3
2 )

9
10 , improving prime q case.

In the t-aspect case, Aggarwal (improving Munshi’s [III]):∑
n∼N

λϕ(1, n)nit �ϕ N3/4t3/10,

showing cancellation for N > t
6
5 (note: 6

5 <
5
4 ).

But for prime q, this remains unclear...

Why one cares about cancellation in shorter ranges?
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Level of distribution: finer question beyond subconvexity

“level of distribution” ϑd for GLd Hecke eigenvalues
{λF (n) : n ≤ X} in arithmetic progressions n ≡ a mod q:∑

n≤X
n≡a(q)

λF (n)− 1

ϕ(q)

∑
n≤X

(n,q)=1

λF (n)�F ,A
X

q

(
logX

)−A
,

for q ≤ Xϑd .
By applying functional eq./Voronoi, one can take ϑd = 2

d+1 − ε.
GRH ⇒ ϑd = 1/2− ε.
To improve ϑd = 2

d+1 − ε for F ∈ GLd, one would need∑
n∼N

λF (n)Kld(an; q)V
( n
N

)
= o(N)

for N ≈ q
d
2
− 1

2 . However, this seems only known when F are
certain Eisenstein series (e.g., λF (n) =

∑
m|n λf (m), τd(n), etc).



Some other questions

How to extend Conrey–Iwaniec and Petrow–Young’s Weyl bound results
to trace functions K mod q:∑

n≥1

λf (n)K (n)V
(n
q

)
�f q

1−δ+o(1), δ = 1/6?

(Maybe for special trace functions (e.g. K (n) = e( n
q )) first?)

Will it be possible (by “shortening” the family) to establish sub-Weyl for
twists of GL2 for composite moduli (q = q1q2 or q = pr , say)

L(1/2, f .χ)�f q
1/3−δ?

Adelize the delta symbols, so that these results can be extended to
number fields?

Leave it to you!
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