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Self-dual case: a result of Blomer

Let x mod g be a primitive Dirichlet character. Let ¢ € GL3(Z)
be a fixed Hecke—Maass cusp form.
Using a first moment method (a la Xiaoqing Li)
1 -B
q > W+ 7PL(L/2,0 x fX)
fieB(q)

[ s it paoPat < g,
3 R ewar)

Blomer derived (among other thing)
L(1/2.0-xq) < 47577,

for ¢ = sym?g and X?; =1.



Self-dual case: a result of Blomer

Let x mod g be a primitive Dirichlet character. Let ¢ € GL3(Z)
be a fixed Hecke—Maass cusp form.
Using a first moment method (a la Xiaoqing Li)
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Blomer derived (among other thing)
L(1/2.0-xq) < 47577,

for ¢ = sym?g and X?; =1.
Question: How to extend the results to more general ¢ and x?



Why the t-aspect approach fails?

Recall in his [I11], Munshi used Kloosterman's circle method +
“conductor-lowering” trick (removed by Aggarwal later)

1 V., Ny
% VGO v =1,

to obtain L(1/2+it, p) <, t3/479. (See lecture by Jesse Jiisaari.)
Such a feature does not exist in the g-aspect case, i.e., we would

need
n—r
D A(Lmx(m) = Y Ae(Ln) Y x()d(=;—.0) -1y,
n~N n~N r~N

for some ¢|q and then apply DFI to detect 5((n —r)/¢, 0). This is
possible only if the moduli g are composite (e.g., ¢ = g1g2 or
qg=p").

It was unclear how to extend the t-aspect approach to the
g-aspect case (with g prime).



Character twists of GL3: Munshi's result

Munshi took a different approach and showed

Theorem (Munshi, 15'-Annals +16'-preprint)

Let ¢ be a SL3(Z)-invariant cusp form. Let q be a prime. Let
X (mod q) be primitive Dirichlet characters. Then

L(1/2,0.x) <, q¥/470%°() 5 = 1/308.

Munshi’s proof uses
@ a variant of the DFI §-symbol method (via Petersson trace
formula), Voronoi summation, reciprocity for Kloosterman
fractions (e(“") = e(—"—ns’)e(qim)), and Cauchy-Schwarz.
o multiplicativity of Dirichlet characters, so that “amplification’
is possible.

Later, Holowinsky and Nelson found a simplification of Munshi's
approach, leading to:



Character twists of GL3: HN's improvement

Theorem (Holowinsky—Nelson, 2018)

Same notation as above. Then
L(1/2,0.x) <p ¢*/*70°0), 5 =1/36.

@ Their proof removed the use of the Petersson d-symbol.
@ This was extended to general trace functions K by
Kowalski—L.—Michel-Sawin, who showed that
n

> de(LmK(n)V () = o(N)

n>1
as long as N >> ¢*/3 and ||K||s < 1. Here
=~ 1 Xz
K(z) =7 > K(x)e(=)
7 @ 7

denotes the (discrete) Fourier transform of K.
Below we sketch Munshi's approach and HN's simplification.



proof preparation: Poisson & Voronoi summations

Let K(n; q) be a g-periodic function.

Lemma (Poisson summation: GL)

where K(f; q) = f > x(q) K(xiq)e (%)

Let

Kli(m; q) == ! > e(X1+"'+mm)

i1
97 o ala) 9

be (i — 1)-dim’l normalized hyper-Kloosterman sums.

Lemma (Voronoi summation: GL4(Z)-case)

Ae(n)Kli(an; q) - e (A)Kly—i(an; q).
D D PR

.
A<y



Recap of versions of delta-symbol

For —N < n < N, to detect §(n,0), we have

@ “trival" §-symbol
1 an .
5(n,0) = . Ze(?), ifc > |n|;
a(c)

application: subconvexity for L(1/2 + it, f.x) (Burgess-Weyl
type), L(1/2,f x g), etc.
e Jutila 4-symbol

(n,0) = Z Z 2(5/ e(nx)dx + “error”;
ceC

application: subconvexity for L(1/2 + it, f.x), GL3 x GLy
shifted convolution.



Recap of versions of delta-symbol (cont)

@ Kloosterman é-symbol

* an ! nx
5(n,0) = 2Re ZZ clae(ac)/o e(——)dx;

c<C<a<c+C ca
application: quaternary quadratic forms, subconvexity for
L(1/2 + it,¢), etc.
@ DFI §-symbol

1 1 * an nx
<3(n,0):E Z EZ e(7) /Rg(c,x) e(z) dx;
S e chmede
arithmetic archimedean

various of applications...

and other versions...



proof preparation: Petersson §-symbol

Iwaniec (97', “Topics”) interpreted the Petersson formula

Z wy /\,c( YAr(n) = do(r, n)+2m-sz 5¢(r,n;cm)Jk_1(47T\/ﬁ>

cm cm
feB(m,y) c=1

as a spectral decomposition of §(r, n), and performed averaging over the
weight k to derive applications.

Here
(r.n: ) Z w(x (rx—i—nx).

x mod ¢




proof preparation: Petersson §-symbol

Iwaniec (97', “Topics”) interpreted the Petersson formula

Z W /\f( )Ar(n) =06(r,n) +27i~ kzsl/’ r, Cm)Jk_1(47r\/ﬁ>

cm cm
feB(m,y) c=1

as a spectral decomposition of §(r, n), and performed averaging over the
weight k to derive applications.

Here
(r.n: ) Z w(x (rx—i—nx).

x mod ¢

Munshi wrote

S = 3w M) — 2w+ 30 2RI (Mﬁ)-

cm cm
feBi(m,y) c=1

For the level-aspect problems, one has the flexibility of performing
averages over 1 and the level m (rather than over k).



Averaging over Petersson formula

For x mod g, to show

L(1/2,¢0.x) <y q
By Approx. FE, it suffices to show

D X1 n)x(n) <, N7, N < g2,
n~N

3/4—6
b

Munshi (16'-preprint) took the following averages over ¢ and m
(= pq):

(r.nt) = = Z > > wrtAr(NAf(n)

(—1)——1

27r/ Sy(r, nt; cpq) <4ﬂm)
Y Yy S g )

p~P wmodp c=1
YP(-1)=—

Here P* ~ P2,



Munshi's approach: applying Petersson §-symbol

With this expression, Munshi wrote (assume N = ¢3/2)

3 A(ln)x LZX > Xo(1n) > x(r)d(r,nt)

an3/2 O~ L nr\Jq3/2 r~q3/2[_

=F"+ 0"

Rmk: the ¢-sum is reminiscent of the amplification method; multiplicity
of x: x(nf) = x(n)x(¢) is needed.

The Goal: To beat the bounds F*, O* < ¢*? (w/ appropriate choices
of P and L). Here

*%%ZZW) ST 3 X

prP oL n~g3/? reg3/2L

Z Z Sy(r, n¢; cpq)Jk_1 (477\/@)

1 mod p c/qL/P cPq
H(-1=-1

and F* = (next slide).



Munshi's approach: treatment of F*

f*z%ZZf((ﬁ) Z Z wf_l

p~P L Y mod p feEBK(pqg,)
P(-1)=-1
D XA D2 Al mA(n0).
r~gd/2L n~gq3/2

Munshi took the following steps to treat F*.



Munshi's approach: treatment of F*

P 3D SR IS DD D

p~P Ll i mod p fEBK(pq,)
W(-1)=—1
> X)) D0 Ao(1, n)Ae(nl).
rg3/2L n~gq3/2

Munshi took the following steps to treat F*.
@ Functional equations to the n and r-sums.
@ Petersson formula over f. No diagonal contribution; only left with
the off-diagonal terms ZC<<\/5P2. Sum over 1) and simplify the sum.
@ GLj3-Voronoi over the n-sum with modulus c.
@ Poisson summation over the c-sum to arrive at

ZZ Z Z)‘ (1, n)x(rép)S(—qnp, 1; rt).
p~P L~L r~./qP/L n~P3

@ Cauchy-Schwarz with p, -sums inside the square

I > p 20 X(EP)S(—qnp, 1; ré)}2, followed with Poisson in
n-sum.



Holowinsky's initial alternative treatment of F*

@ Functional equation to the r-sum only.
@ Petersson formula over f. Simplifying the sum gives

ZZ Z Z Ao(1,n)X(rtp)S(nrip,1;q).

p~P ¢~L rN\/aP/L an3/2

@ GL3-Voronoi over the n-sum to get

- QZZ S S A (rtp)e (”fp).

p~P U~ r~ /qP/L n~g3/2

@ Reciprocity e (”’ep> =e(-"7)e (rz ) and then Voronoi in
the n-sum with modulus r¥, to arrive at

S 3 DT A m)R(rtR)S(—anp, 1 rt).

p~P &~L r~ /qP/L n~P3

@ Same as in Munshi's.



Holowinsky—Nelson's observation

HN observed: if one applied Poisson summation over the r-sum in
F49, the zero frequency ¥ = 0 contributes our initial object of
interest >, 32 Ap(1, n)x(n), and the non-zero frequencies 7 # 0
give a sum 09 (similar to Munshi's O*-term).

i.e., they discovered the relation

S-S D D DERIENCLNEES

p~P UL r/qP /L an3/2

NEXZ)\ (1, n)x(n) + O9,

n~gq3/2

where
1 S)_((na FPZ q)
PR CUD S DD D
g3/ p~P (~L 0#£|F|</qL/P

~~ one can eliminate Munshi's previous steps (particularly the
Petersson d-symbol), and begin just with the sum F9.



One-page summary of HN's simplification (y ~» K mod q)

Poisson summation gives
= Y K(=rlp)e(—=)=K(n)+ > Sp(n,Fpl;q),
re/GP/L 0#F<\/qL/P
where S5 =(n, Fpl; q) = sz(q) K( )e (T)e(%ﬂ’z). Recall here
K(z) = mzx(q) K(x)e(%).

rénp

Then
Fa= Y Ap(1,nK(n)+ O,
an3/2
where
rlpn
Fq = pzzz Z Z rép)(q);
p~P {~L rwa/L an3/2
and

Oq = % Z Aw(la”)zz Z §R(”7 pl; q).

an3/2 p~P e~L 0#F<\/EL/P



Munshi and HN's treatment for F, and O,

@ Treatment of O4: Cauchy-Schwarz
1 1 2 1/2,
O < (30 PeltmP) P (32 132373 Splom ol a))
n~q3/2 n~q3/2 P £ F#£0

3/2 q"/
Open the square and Poisson in the n-variable < ¢3/2| Koo f.

e Treatment of F,: Reciprocity e(anp) = e(—"9)e( 715), then
Voronoi 3°, Ay (1, n)e(—"83) — 3~ A,(1, n)KL(pgn; rf), to get

Fq_p?/zz Z anZK —rlp)Kly(pgn; rf)

n~P3 r~./qP/L p~P ~L
< X L AT (332055 6m™
n~P3 r n~P r

Open the square and apply Poisson in the n-sum,
< | Klloo( Gz + (gi72) %)

@ Balance the parameters = F, + O, < ||K||sq3/2=%: done.



Comparisons: character twists of GL4 (d = 1,2,3 X 2)

Question: What the shortest range is for getting cancellation? i.e., how
small 17 can we take so that

> Ae(n)K(n) = o(N)?
n~(+/Cond)"



Comparisons: character twists of GL4 (d = 1,2,3 X 2)

Question: What the shortest range is for getting cancellation? i.e., how
small 17 can we take so that

> Ae(n)K(n) = o(N)?
n~(+/Cond)"

@ GL; case. Pélya—Vinogradov: > _, x(n) < ,/qlogg; Burgess:
> n<n X(n) has cancellation when N > g'/4.

@ GL; case. Fouvry—Kowalski-Michel (aprés Bykovskit):
Z Af(”)K(”)V(%) <rv.cp) NP8,
n~N

hence it has cancellation when N >> ¢%/4.

@ GL3 x GLy case. Sharma and L.—Michel-Sawin show
rn
Z Ap(r, ")/\f(")K(”)V(W) = o(N),
r,n>1

11

when N> ¢34 = (¢%)%.



“natural” threshold for shortest length of cancellation?

@ Guess: Maybe a “natural proof in all these problems would
produce an exponent 24-1 (s.t. N > (v/Cond ) 5 )2
This holds for d = 1,2,3 x 2.

@ [ssue: The d = 3 case does not match thls bound yet: a
“natural” proof should give N > ¢°/4 = (q2)

Recall Holowinsky—Nelson and KLMS obtain

n ~
Z Ap(L, ”)K(”)V(ﬁ) eV a*PNPE||K oo,

n>1

showing cancellation for N > g*/3. Though this is sufficient for
subconvexity, for other applications it is desirable to go down
further. Example: If one was able to obtain cancellation for

N > q, then taking K(n) = Kls(an; q) this would imply
{As(1,n) : n < X} being equidistributed in n = a mod g, for

q < X" with 93 = 1/2 4.



Limitation of the Munshi-HN approach

@ By specifying Sharma’s f € GL; to Eisenstein series, one gets:
n

> (1, Mx(mV () < N

when N > ¢'1/8 = (q%)% improvement over Holowinsky—Nelson's
N > g*/3 (and also the subconvex-exponent).

@ The approach of Munshi and HN does not make heavy use of the
underlying geometry of x (e.g., Weil's RH). Instead of encountering
. N T = XA

> Sglx, Fpuly; q)Sy(x, fP2€2:CI)€(?)

x mod q

with /i # 0, one only needs to deal with the case i = 0, in contrast
to the GL3 and GL3 x GLy-scenario.



Limitation of the Munshi-HN approach

@ By specifying Sharma’s f € GL; to Eisenstein series, one gets:
3oL, n)X(n)V(%) < N9
n>1

when N > ¢'1/8 = (q%)% improvement over Holowinsky—Nelson's
N > g*/3 (and also the subconvex-exponent).

@ The approach of Munshi and HN does not make heavy use of the
underlying geometry of x (e.g., Weil's RH). Instead of encountering

S Su(x. Forfi; @) Sx(x, Ppafz; ) e(X—q”)

x mod q

with /i # 0, one only needs to deal with the case i = 0, in contrast
to the GL3 and GL3 x GLy-scenario.

Problem: Can one find a new proof for
> oon A1, n)K(n) = o( N) that shows cancellation for N > ¢°/4?
Or at least improving N > ¢*/3?



Limitation of the Munshi-HN approach

Examples with better saving.

@ In the self-dual case, Blomer proved much stronger bounds
L(1/2,sym2g.xq) < q3/4_1/8+6, L(1/2,sym2g><fj.xq) < q3/2_1/4+5.
o If g=p", p fixed prime and r large, then Sun—-Zhao:

Z )\4‘0(1’ n)X(n) Lp,p N1/2q3/4—3/40’
n~N

showing cancellation for N > (q%)% improving prime g case.
@ In the t-aspect case, Aggarwal (improving Munshi's [Il1]):

Z Ao(1, mn' <, N3/4¢3/10,
n~N
showing cancellation for N > t5 (note: & < 2).

But for prime g, this remains unclear...



Limitation of the Munshi-HN approach

Examples with better saving.

@ In the self-dual case, Blomer proved much stronger bounds
L(1/2,sym2g.xq) < q3/4_1/8+6, L(1/2,sym2g><fj.xq) < q3/2_1/4+5.
o If g=p", p fixed prime and r large, then Sun—-Zhao:

Z )\4‘0(1’ n)X(n) Lp,p N1/2q3/4—3/40’
n~N

showing cancellation for N > (q%)% improving prime g case.
@ In the t-aspect case, Aggarwal (improving Munshi's [Il1]):
Z Ao(1, mn' <, N3/4¢3/10,

n~N
. . 6 .6 5
showing cancellation for N > ts5 (note: g < 3).
But for prime g, this remains unclear...

Why one cares about cancellation in shorter ranges?



Level of distribution: finer question beyond subconvexity

“level of distribution” 4 for GLgq Hecke eigenvalues
{Ae(n) : n < X} in arithmetic progressions n = a mod q:

1 X _
> )‘F(”)—m D> Ar(n) <Foa ;(ng) g

n<X n<X
n=a(q) (n,q)=1
for g < XV4.

By applying functional eq./Voronoi, one can take ¥4 = d%rl — €.
GRH =94 =1/2 —¢.
To improve ¥4 = d%Ll — ¢ for F € GLg, one would need

Z Ae(n)Klg(an; q)V(%) = o(N)
n~N

d_1 .
for N =~ g2~ 2. However, this seems only known when F are

certain Eisenstein series (e.g., Ap(n) = 3_ 1, Ar(m), 7a(n), etc).



Some other questions

@ How to extend Conrey—lwaniec and Petrow—Young's Wey/ bound results
to trace functions K mod q:

> Ar(n)K(n )<< gt 5 =1/67
n>1

(Maybe for special trace functions (e.g. K(n) = e(g)) first?)

@ Will it be possible (by “shortening” the family) to establish sub-Weyl for
twists of GLa for composite moduli (¢ = g1g2 or g = p", say)

L(1/2,f.x) < q/37%?

@ Adelize the delta symbols, so that these results can be extended to
number fields?

Leave it to you!
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